People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Macfarlane, Douglas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2023High performance acidic water electrooxidation catalysed by manganese–antimony oxides promoted by secondary metalscitations
- 2018Ionic liquid electrolytes supporting high energy density in sodium-ion batteries based on sodium vanadium phosphate compositescitations
- 2018The electrochemistry and performance of cobalt-based redox couples for thermoelectrochemical cellscitations
- 2018The effect of cation chemistry on physicochemical behaviour of superconcentrated NaFSI based ionic liquid electrolytes and the implications for Na battery performancecitations
- 2017Properties of High Na-Ion Content N-Propyl-N-Methylpyrrolidinium Bis(Fluorosulfonyl)Imide -Ethylene Carbonate Electrolytescitations
- 2017Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquidscitations
- 2017Metal-free black silicon for solar-powered hydrogen generationcitations
- 2016Novel Na+ ion diffusion mechanism in mixed organic-inorganic ionic liquid electrolyte leading to high Na+ transference number and stable, high rate electrochemical cycling of sodium cellscitations
- 2016Reduction of oxygen in a trialkoxy ammonium-based ionic liquid and the role of watercitations
- 2016Stable zinc cycling in novel alkoxy-ammonium based ionic liquid electrolytescitations
- 2016Inorganic-organic ionic liquid electrolytes enabling high energy-density metal electrodes for energy storagecitations
- 2016Unexpected effect of tetraglyme plasticizer on lithium ion dynamics in PAMPS based ionomerscitations
- 2016Investigating non-fluorinated anions for sodium battery electrolytes based on ionic liquidscitations
- 2016In-situ-activated N-doped mesoporous carbon from a protic salt and its performance in supercapacitorscitations
- 2016Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid-solvent mixturescitations
- 2016Recent developments in environment-friendly corrosion inhibitors for mild steel
- 2015Spin-crossover, mesomorphic and thermoelectrical properties of cobalt(II) complexes with alkylated N3-Schiff basescitations
- 2015Evaluation of electrochemical methods for determination of the seebeck coefficient of redox electrolytescitations
- 2015Characterisation of ion transport in sulfonate based ionomer systems containing lithium and quaternary ammonium cationscitations
- 2012Electrodeposited MnOx films from ionic liquid for electrocatalytic water oxidationcitations
- 2012Electrochemical etching of aluminium alloy in ionic liquids
- 2011Anodising AA5083 aluminium alloy using ionic liquids
- 2011Electrochemical reactivity of trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate ionic liquid on glassy carbon and AZ31 magnesium alloycitations
- 2011On the use of organic ionic plastic crystals in all solid-state lithium metal batteriescitations
- 2011Anodic oxidation of AZ31 Mg alloy in ionic liquid
- 2011Crystallisation kinetics of some archetypal ionic liquidscitations
- 2011Transport properties and phase behaviour in binary and ternary ionic liquid electrolyte systems of interest in lithium batteriescitations
- 2010Potentiostatic control of ionic liquid surface film formation on ZE41 magnesium alloycitations
- 2010Long-term structural and chemical stability of DNA in hydrated ionic liquidscitations
- 2010An azo-spiro mixed ionic liquid electrolyte for lithium metal- LiFePO 4 batteriescitations
- 2010Characterization of the magnesium alloy AZ31 surface in the ionic liquid trihexyl(tetradecyl)phosphonium bis(trifluoromethanesulfonyl)amide
- 2010Proton transport properties in Zwitterion blends with Bronsted acidscitations
- 2000Experimental and theoretical investigations of the effect of deprotonation on electronic spectra and reversible potentials of photovoltaic sensitizerscitations
Places of action
Organizations | Location | People |
---|
article
Potentiostatic control of ionic liquid surface film formation on ZE41 magnesium alloy
Abstract
The generation of potentially corrosion-resistant films on light metal alloys of magnesium have been investigated. Magnesium alloy, ZE41 [Mg−Zn−Rare Earth (RE)-Zr, nominal composition ∼4 wt % Zn, ∼1.7 wt % RE (Ce), ∼0.6 wt % Zr, remaining balance, Mg], was exposed under potentiostatic control to the ionic liquid trihexyl(tetradecyl)phosphonium diphenylphosphate, denoted [P<sub>6,6,6,14</sub>][DPP]. During exposure to this IL, a bias potential, shifted from open circuit, was applied to the ZE41 surface. Electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) were used to monitor the evolution of film formation on the metal surface during exposure. The EIS data indicate that, of the four bias potentials examined, applying a potential of −200 mV versus OCP during the exposure period resulted in surface films of greatest resistance. Both EIS measurements and scanning electron microscopy (SEM) imaging indicate that these surfaces are substantially different to those formed without potential bias. Time of flight-secondary ion mass spectrometry (ToF-SIMS) elemental mapping of the films was utilized to ascertain the distribution of the ionic liquid cationic and anionic species relative to the microstructural surface features of ZE41 and indicated a more uniform distribution compared with the surface following exposure in the absence of a bias potential. Immersion of the treated ZE41 specimens in a chloride contaminated salt solution clearly indicated that the ionic liquid generated surface films offered significant protection against pitting corrosion, although the intermetallics were still insufficiently protected by the IL and hence favored intergranular corrosion processes.