People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nordgren, Niklas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Adhesion dynamics for cellulose nanocomposites.
Abstract
The efficiency of poly(ϵ-caprolactone) (PCL) as a matrix polymer for cellulose nanocomposites has been investigated at the macromolecular contact level using atomic force microscopy in a colloidal probe configuration. Model cellulose microspheres grafted with PCL were prepared via ring-opening polymerization. Force measurements between the functionalized particles revealed the adhesion to be highly dependent on the contact time because of a diffusion-controlled mechanism. Moreover, an increase of the temperature to 60 °C (close to Tm for the PCL graft) greatly enhanced the adhesion at the polymer−polymer interface, demonstrating the importance of entanglements in the annealing of composite materials.