People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lee, Sungbae
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Graphene Oxide-Phosphor Hybrid Nanoscrolls with High Luminescent Quantum Yield: Synthesis, Structural, and X-ray Absorption Studies
Abstract
Highly luminescent graphene oxide (GO)-phosphor hybrid thin films with a maximum quantum yield of 9.6% were synthesized Via a simple chemical method. An intense luminescence emission peak at 537 nm and a broad emission peak at 400 nm were observed from the GO-phosphor hybrid films. The maximum quantum yield of the emissions from the hybrid films was found to be 9.6%, which is 48 times higher than that of pristine GO films. The GO-phosphor hybrids were prepared via spin-coating and subsequent postannealing of the films, resulting in scrolling of the GO sheets. The resulting GO nanoscrolls exhibited a length of similar to 2 mu m with nanoscale interior cavities. Transmission electron microscopy and selected-area electron diffraction analyses revealed that the lattice structure of the tubular scrolls is similar to that of carbon nanotubes. While pristine GO films are p-type, in the GO-phosphor hybrids, the Fermi level shifted upward and fell between the HOMO-LUMO gap due to phosphor attachment via C-N bonding. The highly luminescent GO-phosphor hybrids will find important applications in graphene-based optoelectronic devices.