People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Branquinho, Rita
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2022Solution Combustion Synthesis of Hafnium-Doped Indium Oxide Thin Films for Transparent Conductorscitations
- 2022Solution Combustion Synthesis of Hafnium-Doped Indium Oxide Thin Films for Transparent Conductorscitations
- 2022A Comparison between Solution-Based Synthesis Methods of ZrO2 Nanomaterials for Energy Storage Applicationscitations
- 2022A Comparison between Solution-Based Synthesis Methods of ZrO2 Nanomaterials for Energy Storage Applicationscitations
- 2020Application of ultrasonic sprayed zirconium oxide dielectric in zinc tin oxide-based thin film transistorcitations
- 2020Printed, Highly Stable Metal Oxide Thin-Film Transistors with Ultra-Thin High-κ Oxide Dielectriccitations
- 2020Printed, Highly Stable Metal Oxide Thin-Film Transistors with Ultra-Thin High-κ Oxide Dielectriccitations
- 2020Solution combustion synthesis of transparent conducting thin films for sustainable photovoltaic applicationscitations
- 2020Solution combustion synthesis of transparent conducting thin films for sustainable photovoltaic applicationscitations
- 2020Piezoelectricity Enhancement of Nanogenerators Based on PDMS and ZnSnO3 Nanowires through Microstructurationcitations
- 2019Tailoring IGZO composition for enhanced fully solution-based thin film transistorscitations
- 2018Boosting highly transparent and conducting indium zinc oxide thin films through solution combustion synthesis: Influence of rapid thermal annealingcitations
- 2016UV-Mediated Photochemical Treatment for Low-Temperature Oxide-Based Thin-Film Transistorscitations
- 2016FUV-assisted low temperature AlOx solution based dielectric for oxide TFTs
- 2015Gravure printed sol-gel derived AlOOH hybrid nanocomposite thin films for printed electronicscitations
- 2015Gravure printed sol-gel derived AlOOH hybrid nanocomposite thin films for printed electronicscitations
- 2015Morphological and optical characterization of transparent thin films obtained at low temperature using ZnO nanoparticles
- 2015A combination of solution synthesis solution combustion synthesis for highly conducting and transparent Aluminum Zinc Oxide thin filmscitations
- 2014Aqueous Combustion Synthesis of Aluminum Oxide Thin Films and Application as Gate Dielectric in GZTO Solution-based TFTscitations
- 2013Preparation and characterization of cellulose nanocomposite hydrogels as functional electrolytescitations
- 2008Adsorption and catalytic properties of SiO2/Bi2S3 nanocomposites on the methylene blue photodecolorization processcitations
Places of action
Organizations | Location | People |
---|
article
Aqueous Combustion Synthesis of Aluminum Oxide Thin Films and Application as Gate Dielectric in GZTO Solution-based TFTs
Abstract
Solution processing has been recently considered as an option when trying to reduce the costs associated to deposition under vacuum. In this context most of the research efforts have been centered in the development of the semiconductors processes nevertheless the development of the most suitable dielectrics for oxide based transistors is as relevant as the semiconductor layer itself. In this work we explore the solution combustion synthesis and report on a completely new and green route for the preparation of amorphous aluminum oxide thin films; introducing water as solvent. Optimized dielectric layers were obtained for a water based precursor solution with 0.1 M concentration and demonstrated high capacitance, 625 nF cm-2 at 10 kHz, and a permittivity of 7.1. These thin films were successfully applied as gate dielectric in solution processed gallium-zinc-tin oxide (GZTO) thin film transistors (TFTs) yielding good electrical performance such as subthreshold slope of about 0.3 V dec-1 and mobility above 1.3 cm2 V-1 s-1.