Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Iyyakkunnel, Santhosh

  • Google
  • 1
  • 7
  • 38

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Morphological Changes of Tungsten Surfaces by Low-Flux Helium Plasma Treatment and Helium Incorporation via Magnetron Sputtering38citations

Places of action

Chart of shared publication
Steiner, Roland
1 / 3 shared
Marot, Laurent
1 / 3 shared
Chapon, Patrick
1 / 17 shared
Dueggelin, Marcel
1 / 2 shared
Mathys, Daniel
1 / 5 shared
Moser, Lucas
1 / 2 shared
Meyer, Ernst
1 / 8 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Steiner, Roland
  • Marot, Laurent
  • Chapon, Patrick
  • Dueggelin, Marcel
  • Mathys, Daniel
  • Moser, Lucas
  • Meyer, Ernst
OrganizationsLocationPeople

article

Morphological Changes of Tungsten Surfaces by Low-Flux Helium Plasma Treatment and Helium Incorporation via Magnetron Sputtering

  • Steiner, Roland
  • Marot, Laurent
  • Chapon, Patrick
  • Dueggelin, Marcel
  • Mathys, Daniel
  • Iyyakkunnel, Santhosh
  • Moser, Lucas
  • Meyer, Ernst
Abstract

The effect of helium on the tungsten microstructure was investigated first by exposure to a radio frequency driven helium plasma with fluxes of the order of 1 X 1019 m(-2) s(-1) and second by helium incorporation via magnetron sputtering. Roughening of the surface and the creation of pinholes were observed when exposing poly- and nanocrystalline tungsten samples to low-flux plasma. A coating process using an excess of helium besides argon in the process gas mixture leads to a porous thin film and a granular surface structure whereas gas mixture ratios of up to 50% He/Ar (in terms of their partial pressures) lead to a dense structure. The presence of helium in the deposited film was confirmed with glow-discharge optical emission spectroscopy and thermal desorption measurements. Latter revealed that the highest fraction of the embedded helium atoms desorb at approximately 1500 K. Identical plasma treatments at various temperatures showed strongest modifications of the surface at 1500 K, which is attributed to the massive activation of helium singly bond to a single vacancy inside the film. Thus, an efficient way of preparing nanostructured tungsten surfaces and porous tungsten films at low fluxes was found.

Topics
  • porous
  • impedance spectroscopy
  • microstructure
  • surface
  • thin film
  • activation
  • tungsten
  • vacancy