People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tammelin, Tekla
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Interfacial Engineering of Soft Matter Substrates by Solid-State Polymer Adsorption
- 2024Advanced nanocellulose-based electrochemical sensor for tetracycline monitoringcitations
- 2023Protein Adsorption and Its Effects on Electroanalytical Performance of Nanocellulose/Carbon Nanotube Composite Electrodescitations
- 2022Pilot-scale modification of polyethersulfone membrane with a size and charge selective nanocellulose layercitations
- 2022Pilot-scale modification of polyethersulfone membrane with a size and charge selective nanocellulose layercitations
- 2021Functionalized Nanocellulose/Multiwalled Carbon Nanotube Composites for Electrochemical Applicationscitations
- 2020Upcycling Poultry Feathers with (Nano)cellulose:Sustainable Composites Derived from Nonwoven Whole Feather Preformscitations
- 2019Cationic starch as strengthening agent in nanofibrillated and bacterial cellulose nanopapers
- 2018Structural distinction due to deposition method in ultrathin films of cellulose nanofibrescitations
- 2018Foam-formed fibre materials
- 2018Effect of cellulosic fibers on foam dynamics
- 2017Strongly reduced thermal conductivity in hybrid ZnO/nanocellulose thin filmscitations
- 2017Sample geometry dependency on the measured tensile properties of cellulose nanopaperscitations
- 2017In situ TEMPO surface functionalization of nanocellulose membranes for enhanced adsorption of metal ions from aqueous mediumcitations
- 2015Phase behaviour and stability of nanocellulose stabilized oil-in-water emulsions
- 2015Correlation between cellulose thin film supramolecular structures and interactions with watercitations
- 2014Nanofibrillated cellulose, poly(vinyl alcohol), montmorillonite clay hybrid nanocomposites with superior barrier and thermomechanical propertiescitations
- 2012Nano-fibrillated cellulose vs bacterial cellulose
- 2012High performance cellulose nanocompositescitations
- 2012High performance cellulose nanocomposites:Comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulosecitations
- 2012Nano-fibrillated cellulose vs bacterial cellulose:Reinforcing ability of nanocellulose obtained topdown or bottom-up
- 2011Quantitative assessment of the enzymatic degradation of amorphous cellulose by using a quartz crystal microbalance with dissipation monitoringcitations
- 2011Nanocomposite packaging materials from polysaccharides and montmorillonite
- 2010Multifunctional barrier films and coatings from biopolymers via enzymatic modification
- 2010Bio-hybrid nanocomposite coatings from polysaccharides and nanoclay
- 2003Adsorption of cationic starch on anionic silica studied by QCM-D ; Kationisen tärkkelyksen adsorptio anioniselle SiO2-pinnalle
Places of action
Organizations | Location | People |
---|
article
High performance cellulose nanocomposites
Abstract
<p>This work investigates the surface and bulk properties of nanofibrillated cellulose (NFC) and bacterial cellulose (BC), as well as their reinforcing ability in polymer nanocomposites. BC possesses higher critical surface tension of 57 mN m <sup>-1</sup> compared to NFC (41 mN m <sup>-1</sup>). The thermal degradation temperature in both nitrogen and air atmosphere of BC was also found to be higher than that of NFC. These results are in good agreement with the higher crystallinity of BC as determined by XRD, measured to be 71% for BC as compared to NFC of 41%. Nanocellulose papers were prepared from BC and NFC. Both papers possessed similar tensile moduli and strengths of 12 GPa and 110 MPa, respectively. Nanocomposites were manufactured by impregnating the nanocellulose paper with an epoxy resin using vacuum assisted resin infusion. The cellulose reinforced epoxy nanocomposites had a stiffness and strength of approximately ∼8 GPa and ∼100 MPa at an equivalent fiber volume fraction of 60 vol.-%. In terms of the reinforcing ability of NFC and BC in a polymer matrix, no significant difference between NFC and BC was observed.</p>