People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bond, Alan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2021CdS-Enhanced Ethanol Selectivity in Electrocatalytic CO2 Reduction at Sulfide-Derived Cu-Cdcitations
- 2019Electrocatalytic CO2 reduction to formate on Cu based surface alloys with enhanced selectivitycitations
- 2016Efficient enzymatic oxidation of glucose mediated by ferrocene covalently attached to polyethylenimine stabilized gold nanoparticlescitations
- 2016EPR spectroscopic characterization of a monomeric PtIII species produced via electrochemical oxidation of the anticancer compound trans-[PtII{(p-HC6F4)NCH2CH2NEt2}Cl(py)]citations
- 2011Anion dependent redox changes in iron bis-terdentate nitroxide {NNO} chelatescitations
- 2011Aluminium coordination chemistry in ionic liquid/AlCl3 mixtures
Places of action
Organizations | Location | People |
---|
article
Electrocatalytic CO2 reduction to formate on Cu based surface alloys with enhanced selectivity
Abstract
Cu is a catalyst that can electrochemically reduce CO2 to a variety of industrially important carbon products, but often with poor selectivity and low current density. Alloying Cu with other metals provides a useful strategy to tune product selectivity. In this study, four different metal hydroxides were deposited onto Cu(OH)2 sub-micron-sized rods (SMRs) that were grown on a copper foam by an inexpensive and facile method. This procedure was followed by dehydration to form MOx (M = Cd, Sb, Pb, Zn) on a CuyO SMR surface and then electrochemically reduced to form MCu on the Cu SMR surface. Use of these materials for CO2 reduction achieves enhancement in formate selectivity in the order of Cd > Sb > Pb > Zn with excellent current density (∼30 mA cm–2). The role of the four materials in tuning the selectivity toward formate during electrochemical CO2 reduction on these modified Cu SMRs is elucidated.