Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chand, Deepak

  • Google
  • 1
  • 3
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Alternative to the Popular Imidazolium Ionic Liquids30citations

Places of action

Chart of shared publication
Wilk-Kozubek, Magdalena
1 / 4 shared
Mudring, Anja-Verena
1 / 78 shared
Smetana, Volodymyr
1 / 55 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Wilk-Kozubek, Magdalena
  • Mudring, Anja-Verena
  • Smetana, Volodymyr
OrganizationsLocationPeople

article

Alternative to the Popular Imidazolium Ionic Liquids

  • Wilk-Kozubek, Magdalena
  • Chand, Deepak
  • Mudring, Anja-Verena
  • Smetana, Volodymyr
Abstract

<p>Direct quaternization of 1-methyl-1,2,4-triazole with n-alkyl methanesulfonates (alkyl = butyl, octyl, dodecyl) showed to be an atom-economic, convenient, mild, solvent- and halide-free way to obtain 1,2,4-triazolium methanesulfonate ionic liquids in high purity and yield. Subsequent metathesis with lithium bis(trifluoromethanesulfonyl)amide (LiTf<sub>2</sub>N) allows for a much desired, easy access to halide-free, bis(trifluoromethanesulfonyl)amide ionic liquids. Differential scanning calorimetry confirms that all investigated compounds qualify as ionic liquids (ILs). Moreover, it reveals for 1-methyl-4-n-dodecyl-1,2,4-triazolium methanesulfonate a rather complex thermal behavior involving formation of mesophases. Indeed, polarizing optical microscopy shows oily streaky textures that are characteristic for smectic liquid crystalline phases. Single-crystal X-ray diffraction structure analysis confirms formation of a layered structure. All compounds are photoluminescent. The color of fluorescence at room temperature can be tuned from blue to orange through the length of the alkyl side chain of the cation, the aromatic interactions between the cations, and the anion nature. In addition, at low temperatures (77 K) a close to white phosphorescence with average lifetimes in the millisecond time range can be observed for 1-methyl-4-n-butyl-triazolium methanesulfonate and all of the studied bis(trifluoromethanesulfonyl)amide ILs. All ILs show an appreciable liquidus range and thermal (up to 260-350 °C) and electrochemical stability. The presented set of ILs overcomes the sometimes problematic acidity and low stability of imidazolium ILs in basic environment and can be obtained easily in high purity without halide contamination. Overcoming two shortcomings of classical imidazolium ILs, they may be good alternatives for a number of applications and even enabling new ones.</p>

Topics
  • compound
  • x-ray diffraction
  • crystalline phase
  • layered
  • texture
  • differential scanning calorimetry
  • Lithium
  • optical microscopy
  • phosphorescence