People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Spirito, Davide
Basque Center for Materials, Applications and Nanostructures
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Full Picture of Lattice Deformation in a Ge<sub>1 − x</sub>Sn<sub>x</sub> Micro‐Disk by 5D X‐ray Diffraction Microscopycitations
- 2024Selective Growth of GaP Crystals on CMOS-Compatible Si Nanotip Wafers by Gas Source Molecular Beam Epitaxycitations
- 2024The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge1−xSnx Microdiskscitations
- 2024Full Picture of Lattice Deformation in a Ge 1-x Sn x Micro‐Disk by 5D X‐ray Diffraction Microscopycitations
- 2024Continuous-wave electrically pumped multi-quantum-well laser based on group-IV semiconductorscitations
- 2024Continuous-wave electrically pumped multi-quantum-well laser based on group-IV semiconductorscitations
- 2024The Lattice Strain Distribution in GexSn1-x Micro-Disks Investigated at the Sub 100-nm Scale
- 2023Terahertz subwavelength sensing with bio-functionalized germanium fano-resonators
- 2023The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge<sub>1−<i>x</i></sub>Sn<sub><i>x</i></sub> Microdiskscitations
- 2023Lateral Selective SiGe Growth for Local Dislocation-Free SiGe-on-Insulator Virtual Substrate Fabrication
- 2022Terahertz subwavelength sensing with bio-functionalized germanium fano-resonatorscitations
- 2022Magnetic properties of layered hybrid organic-Inorganic metal-halide perovskites: Transition metal, organic cation and perovskite phase pffectscitations
- 2022Lateral Selective SiGe Growth for Dislocation-Free Virtual Substrate Fabricationcitations
- 2022Raman spectroscopy in layered hybrid organic-inorganic metal halide perovskites
- 2022Magnetic Properties of Layered Hybrid Organic‐Inorganic Metal‐Halide Perovskites: Transition Metal, Organic Cation and Perovskite Phase Effectscitations
- 2022Monolithic and catalyst-free selective epitaxy of InP nanowires on Silicon
- 2022Tailoring photoluminescence by strain-engineering in layered perovskite flakescitations
- 2020CsPbX3/SiOx (X = Cl, Br, I) monoliths prepared via a novel sol-gel route starting from Cs4PbX6 nanocrystalscitations
- 2020Nanocrystals of Lead Chalcohalides:A Series of Kinetically Trapped Metastable Nanostructurescitations
- 2020Nano- and microscale apertures in metal films fabricated by colloidal lithography with perovskite nanocrystalscitations
- 2020Nanocrystals of Lead Chalcohalidescitations
- 2019Extending the Colloidal Transition Metal Dichalcogenide Library to ReS2 Nanosheets for Application in Gas Sensing and Electrocatalysiscitations
- 2019Keratin-Graphene Nanocomposite: Transformation of Waste Wool in Electronic Devicescitations
Places of action
Organizations | Location | People |
---|
article
Keratin-Graphene Nanocomposite: Transformation of Waste Wool in Electronic Devices
Abstract
Electronic devices, designed to be long lasting, are commonly made with rigid, nondegradable materials. This, together with the presence of rare and toxic elements, creates significant issues for their waste management. The production of electronic devices, made with biodegradable materials that are sourced from waste streams of the agricultural sector, will create the premises for circular economy systems in the electronics sector that will increase its sustainability. Here, this new approach has been demonstrated by using keratin, the protein extracted from waste wool clips, combined with graphene to produce protein-based electronic materials. Resistors plane capacitors and inductors were fabricated, characterized and then assembled together to obtain analogue electrical circuits, such as, high-pass filters or resonators. Morphological structures, electrical characteristics, thermal stability and mechanical properties were fully investigated. Finally, a water-based ink of keratin and graphene was used to functionalize cellulose, obtaining flexible electrodes with remarkable sheet resistances (≈ 10 Ω/sq), ohmic I-V curves were obtained and the electrical conductivity after folding/unfolding cycles was measured. All the processing and fabrication methods used water as the only solvent. The described approach produced easily disposable electronics materials with reduced fingerprint on the environment, demonstrating that keratin from wool<br/>waste is an excellent candidate for the creation of circular economy systems in the electronics sector. The proposed valorization of waste materials for electronics applications is named “wastetronics”.