People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lund, Peter D.
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (56/56 displayed)
- 2024A novel CuFe2O4 ink for the fabrication of low-temperature ceramic fuel cell cathodes through inkjet printingcitations
- 2024Highly Active Interfacial Sites in SFT-SnO2 Heterojunction Electrolyte for Enhanced Fuel Cell Performance via Engineered Energy Bands: Envisioned Theoretically and Experimentallycitations
- 2023Semiconductor Heterostructure (SFT-SnO2) Electrolyte with Enhanced Ionic Conduction for Ceramic Fuel Cellscitations
- 2023A novel CuFe2O4 ink for the fabrication of low-temperature ceramic fuel cell cathodes through inkjet printingcitations
- 2023A novel CuFe2O4 ink for the fabrication of low-temperature ceramic fuel cell cathodes through inkjet printingcitations
- 2023Toward next-generation fuel cell materialscitations
- 2023Enabling high ionic conductivity in semiconductor electrolyte membrane by surface engineering and band alignment for LT-CFCscitations
- 2023Highly Active Interfacial Sites in <scp>SFT‐SnO<sub>2</sub></scp> Heterojunction Electrolyte for Enhanced Fuel Cell Performance via Engineered Energy Bands: Envisioned Theoretically and Experimentallycitations
- 2023LSF films formed on YSZ electrolytes via polymeric precursor deposition for solid oxide fuel cell anode applications
- 2022Demonstrating the potential of iron-doped strontium titanate electrolyte with high-performance for low temperature ceramic fuel cellscitations
- 2022Perovskite Al-SrTiO<sub>3</sub> semiconductor electrolyte with superionic conduction in ceramic fuel cellscitations
- 2022A-site deficient semiconductor electrolyte Sr1−xCoxFeO3−δ for low-temperature (450-550 °C) solid oxide fuel cellscitations
- 2022Encapsulation of commercial and emerging solar cells with focus on perovskite solar cellscitations
- 2022Encapsulation of commercial and emerging solar cells with focus on perovskite solar cellscitations
- 2022Perovskite Al-SrTiO3 semiconductor electrolyte with superionic conduction in ceramic fuel cellscitations
- 2022Improved self-consistency and oxygen reduction activity of CaFe2O4 for protonic ceramic fuel cell by porous NiO-foam supportcitations
- 2022Development and characterization of highly stable electrode inks for low-temperature ceramic fuel cellscitations
- 2022Development and characterization of highly stable electrode inks for low-temperature ceramic fuel cellscitations
- 2021Semiconductor Nb-Doped SrTiO3-δPerovskite Electrolyte for a Ceramic Fuel Cellcitations
- 2021Interface engineering of bi-layer semiconductor SrCoSnO3-δ-CeO2-δ heterojunction electrolyte for boosting the electrochemical performance of low-temperature ceramic fuel cellcitations
- 2021Systematic analysis on the effect of sintering temperature for optimized performance of li0.15ni0.45zn0.4o2-gd0.2ce0.8o2-li2co3-na2co3-k2co3 based 3d printed single-layer ceramic fuel cellcitations
- 2021Tailoring triple charge conduction in BaCo0.2Fe0.1Ce0.2Tm0.1Zr0.3Y0.1O3−δ semiconductor electrolyte for boosting solid oxide fuel cell performancecitations
- 2021Novel Perovskite Semiconductor Based on Co/Fe-Codoped LBZY (La0.5Ba0.5Co0.2Fe0.2Zr0.3Y0.3O3-δ) as an Electrolyte in Ceramic Fuel Cellscitations
- 2021Electrochemical Properties of a Dual-Ion Semiconductor-Ionic Co0.2Zn0.8O-Sm0.20Ce0.80O2-δComposite for a High-Performance Low-Temperature Solid Oxide Fuel Cellcitations
- 2021Promoted electrocatalytic activity and ionic transport simultaneously in dual functional Ba0.5Sr0.5Fe0.8Sb0.2O3-δ-Sm0.2Ce0.8O2-δ heterostructurecitations
- 2021Investigation of factors affecting the performance of a single-layer nanocomposite fuel cellcitations
- 2020Semiconductor Fe-doped SrTiO3-δ perovskite electrolyte for low-temperature solid oxide fuel cell (LT-SOFC) operating below 520 °Ccitations
- 2020Functional ceria-based nanocomposites for advanced low-temperature (300–600 °C) solid oxide fuel cell : A comprehensive reviewcitations
- 2020Intriguing electrochemistry in low-temperature single layer ceramic fuel cells based on CuFe2O4citations
- 2019Tri-doped ceria (M0.2Ce0.8O2-δ, M= Sm0.1 Ca0.05 Gd0.05) electrolyte for hydrogen and ethanol-based fuel cellscitations
- 2019Nanocellulose and Nanochitin Cryogels Improve the Efficiency of Dye Solar Cellscitations
- 2019Nanocellulose and Nanochitin Cryogels Improve the Efficiency of Dye Solar Cellscitations
- 2018Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materialscitations
- 2018Remarkable ionic conductivity and catalytic activity in ceramic nanocomposite fuel cellscitations
- 2018High performance ceramic nanocomposite fuel cells utilizing LiNiCuZn-oxide anode based on slurry methodcitations
- 2018Biobased aerogels with different surface charge as electrolyte carrier membranes in quantum dot-sensitized solar cellcitations
- 2018Highly Efficient and ITO-Free Flexible Counter Electrodes Employing Novel Copper Based Redox Shuttles in Dye-Sensitized Solar Cells
- 2018Wide bandgap oxides for low-temperature single-layered nanocomposite fuel cellcitations
- 2018Application of dye-sensitized and perovskite solar cells on flexible substratescitations
- 2017Impact of Film Thickness of Ultrathin Dip-Coated Compact TiO2 Layers on the Performance of Mesoscopic Perovskite Solar Cellscitations
- 2017Advanced low-temperature ceramic nanocomposite fuel cells using ultra high ionic conductivity electrolytes synthesized through freeze-dried method and solid-routecitations
- 2017Better linkage of smart materials to energy scale
- 2017High conductive (LiNaK)2CO3Ce0.85Sm0.15O2 electrolyte compositions for IT-SOFC applicationscitations
- 2016Investigation of LiNiCuZn-oxide electrodes prepared by different methodscitations
- 2016Quasi-solid electrolyte with polyamidoamine dendron modified-talc applied to dye-sensitized solar cellscitations
- 2016Carbon nanotube-amorphous silicon hybrid solar cell with improved conversion efficiencycitations
- 2015Performance variations and recovery effects in dye sensitized solar cells during long term exposure to natural winter conditions
- 2014Low Cost Ferritic Stainless Steel in Dye Sensitized Solar Cells with Cobalt Complex Electrolytecitations
- 2013High performance low temperature carbon composite catalysts for flexible dye sensitized solar cellscitations
- 2013A new energy conversion technology based on nano-redox and nano-device processescitations
- 2009Segmented Cell Design for Improved Factoring of Aging Effects in Dye Solar Cellscitations
- 2009Nanostructured dye solar cells on flexible substrates-Reviewcitations
- 2006Industrial sheet metals for nanocrystalline dye-sensitized solar cell structurescitations
- 2003Microstructural analysis of selective C/Al2O3/Al solar absorber surfacescitations
- 2002Measurement of current distribution in a free-breathing PEMFCcitations
- 2000Hysteresis in Ce-based AB(5)-type metal hydridescitations
Places of action
Organizations | Location | People |
---|
article
Nanocellulose and Nanochitin Cryogels Improve the Efficiency of Dye Solar Cells
Abstract
<p>Biobased cryogel membranes were applied as electrolyte holders in dye solar cells (DSC) while facilitating carrier transport during operation. They also improved device performance and stability. For this purpose, cellulose nanofibers (CNF), TEMPO-oxidized CNF (TOCNF), bacterial cellulose (BC), and chitin nanofibers (ChNF) were investigated. The proposed materials and protocols for incorporating the electrolyte, via simple casting, avoided the typical problems associated with injection of the electrolyte through filling holes, a major difficulty especially in manufacturing large area cells. Owing to the fact that cryogel membranes did not require any orifice for injection, they were effective in minimizing leakage and in retaining liquid electrolyte. The results indicated the reduction of performance losses compared to conventional electrolyte filling, likely due to the better spatial distribution of electrolyte. DSCs based on BC cryogels had an initially higher performance and similar stability compared to those of the reference cells. When compared to reference cells, CNF and ChNF cryogels produced higher initial performance, but they underwent a faster degradation. The difference in stability was attributed to the effect of residual components, including lignin in CNF and proteins in ChNF, as demonstrated in bleaching experiments. TOCNF indicated a relatively poor performance, most likely because of residual aldehydes. Overall, we offer a comprehensive evaluation based on current-voltage (IV) profiles under simulated sunlight, incident photon-to-charge carrier efficiency (IPCE), electrochemical impedance spectroscopy (EIS), and color image processing, together with accelerated DSC stability tests, to unveil the effects of new membrane-based assembly. Our results give guidelines for future developments related in particular to the effects of the tested biomaterials on device stability.</p>