People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pescarmona, Paolo P.
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Activation of low-cost stainless-steel electrodes for efficient and stable anion-exchange membrane water electrolysis
- 2023Novel elastic rubbers from CO2-based polycarbonatescitations
- 2023Novel elastic rubbers from CO2-based polycarbonatescitations
- 2023Nickel Boride (Ni x B) Nanocrystals:From Solid-State Synthesis to Highly Colloidally Stable Inkscitations
- 2023Nickel Boride (NixB) Nanocrystalscitations
- 2019Bio-Based Chemicalscitations
- 2019Bio-based chemicals:Selective aerobic oxidation of tetrahydrofuran-2,5-dimethanol to tetrahydrofuran-2,5-dicarboxylic acid using hydrotalcite-supported gold catalysts
- 2019Bio-based chemicals:Selective aerobic oxidation of tetrahydrofuran-2,5-dimethanol to tetrahydrofuran-2,5-dicarboxylic acid using hydrotalcite-supported gold catalystscitations
- 2018Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metalscitations
- 2018Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metalscitations
- 2018Carbon-supported iron complexes as electrocatalysts for the cogeneration of hydroxylamine and electricity in a NO-H2 fuel cellcitations
- 2018Carbon-supported iron complexes as electrocatalysts for the cogeneration of hydroxylamine and electricity in a NO-H-2 fuel cell:A combined electrochemical and density functional theory studycitations
- 2018Electrically-responsive reversible Polyketone/MWCNT network through Diels-Alder chemistrycitations
- 2016Iron-containing N-doped carbon electrocatalysts for the cogeneration of hydroxylamine and electricity in a H-2-NO fuel cellcitations
- 2015New iron pyridylamino-bis(phenolate) catalyst for converting CO2 into cyclic carbonates and cross-linked polycarbonatescitations
- 2013Towards a lattice-matching solid-state batterycitations
Places of action
Organizations | Location | People |
---|
article
Bio-Based Chemicals
Abstract
<p>A new, sustainable catalytic route for the synthesis of tetrahydrofuran-2,5-dicarboxylic acid (THFDCA), a compound with potential application in polymer industry, is presented starting from the bio-based platform chemical 5-(hydroxymethyl)furfural (HMF). This conversion was successfully achieved via oxidation of tetrahydrofuran-2,5-dimethanol (THFDM) over hydrotalcite (HT)-supported gold nano-particle catalysts (similar to 2 wt %) in water. THFDM was readily obtained with high yield (>99%) from HMF at a demonstrated 20 g scale by catalytic hydrogenation. The highest yield of THFDCA (91%) was achieved after 7 h at 110 degrees C under 30 bar air pressure and without addition of a homogeneous base. Additionally, Au-Cu bimetallic catalysts supported on HT were prepared and showed enhanced activity at lower temperature compared to the monometallic gold catalysts. In addition to THFDCA, the intermediate oxidation product with one alcohol and one carboxylic acid group (5-hydroxymethyl tetrahydrofuran-2-carboxylic acid, THFCA) was identified and isolated from the reactions. Further investigations indicated that the gold nanoparticle size and basicity of HT supports significantly influence the performance of the catalyst and that sintering of gold nanoparticles was the main pathway for catalyst deactivation. Operation in a continuous setup using one of the Au-Cu catalysts revealed that product adsorption and deposition also contributes to a decrease in catalyst performance.</p>