People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Linder, Markus B.
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Molecular Engineering of a Spider Silk and Mussel Foot Hybrid Protein Gives a Strong and Tough Biomimetic Adhesivecitations
- 2023Pulling and analyzing silk fibers from aqueous solution using a robotic devicecitations
- 2023Pulling and analyzing silk fibers from aqueous solution using a robotic devicecitations
- 2022Recombinant Spider Silk Protein and Delignified Wood Form a Strong Adhesive Systemcitations
- 2022Recombinant Spider Silk Protein and Delignified Wood Form a Strong Adhesive Systemcitations
- 2020Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogelcitations
- 2020Methyl cellulose/cellulose nanocrystal nanocomposite fibers with high ductilitycitations
- 2019Binding Forces of Cellulose Binding Modules on Cellulosic Nanomaterialscitations
- 2018Modification of carbon nanotubes by amphiphilic glycosylated proteinscitations
- 2018Self-Coacervation of a Silk-Like Protein and Its Use As an Adhesive for Cellulosic Materialscitations
- 2015Modular Architecture of Protein Binding Units for Designing Properties of Cellulose Nanomaterialscitations
- 2015Enhanced plastic deformations of nanofibrillated cellulose film by adsorbed moisture and protein-mediated interactionscitations
- 2014Structural characterization and tribological evaluation of quince seed mucilagecitations
- 2013The role of hemicellulose in nanofibrillated cellulose networkscitations
- 2013Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogelscitations
- 2012Adhesion and tribological properties of hydrophobin proteins in aqueous lubrication on stainless steel surfacescitations
Places of action
Organizations | Location | People |
---|
article
Recombinant Spider Silk Protein and Delignified Wood Form a Strong Adhesive System
Abstract
<p>For developing novel fully biological materials, a central question is how we can utilize natural components in combination with biomimetic strategies in ways that both allow feasible processing and high performance. Within this development, adhesives play a central role. Here, we have combined two of nature's excellent materials, silk and cellulose, to function as an adhesive system. As an initial step in processing, wood was delignified. Without lignin, the essential microstructure and alignment of the wood remain, giving a strong scaffold that is versatile to process further. A recombinant spider silk protein was used as a fully biological and water-based adhesive. The adhesive strength was excellent with an average value of 6.7 MPa, with a maximum value of up to 10 MPa. Samples of different strengths showed characteristic features, with high tear-outs for weaker samples and only little tear-out for strong samples. As references, bovine serum albumin and starch were used. Based on the combined data, we propose an overall model for the system and highlight how multiple variables affect performance. Adhesives, in particular, biobased ones, must be developed to be compatible with the overall adherend system for suitable infiltration and so that their mechanical properties match the adherend. The engineering of proteins gives an unmatched potential for designing adhesive systems that additionally have desired properties such as being fully water-based, biologically produced, and renewable. </p>