People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schmidt, Markus
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2022Nanoparticle Tracking in Single‐Antiresonant‐Element Fiber for High‐Precision Size Distribution Analysis of Mono‐ and Polydisperse Samplescitations
- 2021Coherent interaction of atoms with a beam of light confined in a light cagecitations
- 2020Integrated Photonics: Scalable Functionalization of Optical Fibers Using Atomically Thin Semiconductors (Adv. Mater. 47/2020)citations
- 2020Fine-tuning of the optical properties of hollow-core light cages using dielectric nanofilmscitations
- 2020Scalable functionalization of optical fibers using atomically thin semiconductorscitations
- 2019Analysis of viscosity data in As2Se3, Se and Se95Te5 chalcogenide melts using the pressure assisted melt filling techniquecitations
- 2019Higher-Order Mode Temperature-Tunable Supercontinuum Generation in Liquid-Core Optical Fibers
- 2019Convectionless directional solidification in an extremely confined sample geometrycitations
- 2019Tailorable supercontinuum generation in liquid-composite-core fibers
- 2018Optofluidic microstructured fibers: a novel base for new nonlinear photonics and single nano-objects detection (Conference Presentation)
- 2018Understanding Dispersion of Revolver-Type Anti-Resonant Hollow Core Fiberscitations
- 2018Hollow Core Light Cage: Trapping Light Behind Barscitations
- 2017Giant Faraday Rotation through Ultrasmall Fe0n Clusters in Superparamagnetic FeO-SiO2 Vitreous Filmscitations
- 2017Temperature-based wavelength tuning of non-solitonic radiation in liquid-core fibers
- 2017Preparation Technique of Antiresonant Hollow Core Microstructured Optical Fibers for Chemical Sensing
- 2016Label-free tracking of single extracellular vesicles in a nano-fluidic optical fiber (Conference Presentation)citations
- 2015Liquid and Metallic Nanowires in Fibers: A Novel Base for Nanophotonics and Optofluidics
- 2014Hybrid fibers: a base for creating new sensing fiberscitations
- 2014Heterostructures Based on Chalcogenide Glasses for Photonic Applications
- 2013Mid infrared supercontinuum generation in nanotapered chalcogenide-silica step-index waveguides
- 2010Photonische Kristallfasern Photonic Crystal Fibres
- 2006Nonlinear optical polymeric photonic crystals
Places of action
Organizations | Location | People |
---|
article
Hollow Core Light Cage: Trapping Light Behind Bars
Abstract
Optical waveguides represent the key element of integrated planar photonic circuitry having revolutionized many fields of photonics ranging from telecommunications, medicine, environmental science, and light generation. However, the use of solid cores imposes limitations on applications demanding strong light–matter interaction within low permittivity media such as gases or liquids, which has triggered substantial interest toward hollow core waveguides. Here, we introduce the concept of an on-chip hollow core light cage that consists of free-standing arrays of cylindrical dielectric strands around a central hollow core implemented using 3D nanoprinting. The cage operates by an antiresonant guidance mechanism and exhibits extraordinary properties such as (1) diffractionless propagation in “quasi-air” over more than a centimeter distance within the ultraviolet, visible and near-infrared spectral domains, (2) unique side-wise direct access to the hollow core via open spaces between the strands speeding up gas diffusion times by at least a factor of 104, and (3) an extraordinary high fraction of modal fields in the hollow section (>99.9%). With these properties, the light cage can overcome the limitations of current planar hollow core waveguide technology, allowing unprecedented future on-chip applications within quantum technology, ultrafast spectroscopy, bioanalytics, acousto-optics, optofluidics, and nonlinear optics.