People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mortensen, N. Asger
University of Southern Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2024Self-hybridisation between interband transitions and Mie modes in dielectric nanoparticlescitations
- 2024Nonlocal effects in plasmon-emitter interactionscitations
- 2023Photon superbunching in cathodoluminescence of excitons in WS 2 monolayercitations
- 2023Photon superbunching in cathodoluminescence of excitons in WS2 monolayercitations
- 2023Photon superbunching in cathodoluminescence of excitons in WS2 monolayercitations
- 2022Extremely confined gap plasmon modescitations
- 2022Extremely confined gap plasmon modes:when nonlocality matterscitations
- 2022Low-loss anisotropic image polaritons in van der waals crystal α-MoO 3citations
- 2021Anisotropic second-harmonic generation from monocrystalline gold flakescitations
- 2021Anisotropic second-harmonic generation from monocrystalline gold flakescitations
- 2018Ultra-thin titanium nitride films for refractory spectral selectivity [Invited]citations
- 2018Ultra-thin titanium nitride films for refractory spectral selectivitycitations
- 2017The substrate effect in electron energy-loss spectroscopy of localized surface plasmons in gold and silver nanoparticlescitations
- 2017The substrate effect in electron energy-loss spectroscopy of localized surface plasmons in gold and silver nanoparticlescitations
- 2017Near- and far field spectroscopy of semi-continuous gold films with optically induced anisotropy.
- 2017Near- and far field spectroscopy of semi-continuous gold films with optically induced anisotropy.
- 2017Optical reconfiguration and polarization control in semicontinuous gold films close to the percolation threshold
- 2017Optical reconfiguration and polarization control in semicontinuous gold films close to the percolation threshold
- 2017Nonlocal quasinormal modes for arbitrarily shaped three-dimensional plasmonic resonatorscitations
- 2017Broadband infrared absorption enhancement by electroless-deposited silver nanoparticlescitations
- 2016Electron energy-loss spectroscopy of branched gap plasmon resonatorscitations
- 2014Experimental study of nonlocal effects in plasmonic structures with Electron Energy Loss Spectroscopy
- 2013Blueshift of the surface plasmon resonance studied with Electron Energy Loss Spectroscopy (EELS)
- 2013Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effectscitations
- 2013A Review of the Scattering-Parameter Extraction Method with Clarification of Ambiguity Issues in Relation to Metamaterial Homogenizationcitations
- 2013Green's function surface-integral method for nonlocal response of plasmonic nanowires in arbitrary dielectric environmentscitations
- 2012Towards all-dielectric, polarization-independent optical cloakscitations
- 2010Nanoimprinted polymer photonic crystal dye laserscitations
- 2009Capacitance tuning of nanoscale split-ring resonatorscitations
- 2006Microfluidic Dye Lasers
Places of action
Organizations | Location | People |
---|
article
The substrate effect in electron energy-loss spectroscopy of localized surface plasmons in gold and silver nanoparticles
Abstract
Electron energy-loss spectroscopy (EELS) has become increasingly popular for detailed characterization of plasmonic nanostructures, owing to the unparalleled spatial resolution of this technique. The typical setup in EELS requires nanoparticles to be supported on thin substrates. However, as in optical measurements, the substrate material can modify the acquired signal. Here, we have investigated how the EELS signal recorded from supported silver and gold spheroidal nanoparticles at different electron beam impact parameter positions is affected by the choice of a dielectric substrate material and thickness. Consistent with previous optical studies, the presence of a dielectric substrate is found to redshift localized surface plasmons, increase their line-widths, and lead to increased prominence of higher order modes. The extent of these modifications heightens with increasing substrate permittivity and thickness. Specific to EELS, the results highlight the importance of the beam impact parameter and substrate related Čerenkov losses and charging. Our experimental results are compared with and corroborated by full-wave electromagnetic simulations based on the boundary element method. The results present a comprehensive study of substrate induced modifications in EELS and allow identification of optimal substrates relevant for EELS studies of plasmonic structures.