People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hone, James
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Width-Dependent Growth of Atomically Thin Quantum Nanoribbons
- 2022Chemical Vapor-Deposited Graphene on Ultraflat Copper Foils for van der Waals Hetero-Assemblycitations
- 2022Chemical Vapor-Deposited Graphene on Ultraflat Copper Foils for van der Waals Hetero-Assemblycitations
- 2021Chemical Dopant‐Free Doping by Annealing and Electron Beam Irradiation on 2D Materialscitations
- 2019Magic continuum in twisted bilayer WSe2
- 2019Approaching the Intrinsic Limit in Transition Metal Diselenides via Point Defect Controlcitations
- 2016Electron optics with p-n junctions in ballistic graphenecitations
- 2015Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructurescitations
- 2015Photonic and Plasmonic Guided Modes in Graphene-Silicon Photonic Crystalscitations
- 2015Photonic and Plasmonic Guided Modes in Graphene-Silicon Photonic Crystalscitations
Places of action
Organizations | Location | People |
---|
article
Photonic and Plasmonic Guided Modes in Graphene-Silicon Photonic Crystals
Abstract
We report the results of systematic studies of plasmonic and photonic guided modes in large-area single-layer graphene integrated into a nanostructured silicon substrate. The interaction of light with graphene and substrate photonic crystals can be classified in distinct regimes depending on the relation of the photonic crystal lattice constant and the relevant modal wavelengths, that is, plasmonic, photonic, and free-space. By optimizing the design of the substrate, these resonant modes can increase the absorption of graphene in the infrared, facilitating enhanced performance of modulators, filters, sensors, and photodetectors utilizing silicon photonic platforms.