People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dujardin, Erik
French National Centre for Scientific Research
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Memristive Control of Plasmon-Mediated Nonlinear Photoluminescence in Au Nanowires
- 2022Hot Carriers-Induced Nonlinear Photoluminescence in Thin Indium Tin Oxide Layer Patterned by Ga Ion Beam Millingcitations
- 2015Plasmonic Hot Printing in Gold Nanoprismscitations
- 2015Multimodal Plasmonics in Fused Colloidal Networkscitations
Places of action
Organizations | Location | People |
---|
article
Plasmonic Hot Printing in Gold Nanoprisms
Abstract
cited By 18 ; International audience ; The raster-scanned irradiation of ultrathin sub-micrometer crystalline gold colloidal prisms with the tightly focused spot of a femtosecond, near-infrared laser triggers the deterministic deformation and partial melting of nanometer-sized areas of the nanoprisms. The morphological modification of the Au nanoprisms evidences extremely localized sources of heat, the in-plane distribution of which varies with the particle shape and laser polarization. We demonstrate for the first time the direct relationship between heat source density and surface plasmon local density of states (SP-LDOS), which describes quantitatively the rich modal structure of the surface plasmons sustained by the 2D metallic platelets, independently of the knowledge of the illumination configuration. Green’s Dyadic numerical simulations confirm that the optical excitation of the 2D SP modes results in the subwavelength hot imprinting of the SP modal pattern onto the metal surface.