People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Moreels, Iwan
Ghent University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Single-photon emitting arrays by capillary assembly of colloidal semiconductor CdSe/CdS/SiO2 nanocrystalscitations
- 2023Charge carrier dynamics in colloidally synthesized monolayer MoX2 nanosheetscitations
- 2020Surface spin magnetism controls the polarized exciton emission from CdSe nanoplateletscitations
- 2020Near-Edge Ligand Stripping and Robust Radiative Exciton Recombination in CdSe/CdS Core/Crown Nanoplateletscitations
- 2020Near-edge ligand stripping and robust radiative exciton recombination in CdSe/CdS core/crown nanoplateletscitations
- 2019Extending the Colloidal Transition Metal Dichalcogenide Library to ReS2 Nanosheets for Application in Gas Sensing and Electrocatalysiscitations
- 2016Piezoelectric Control of the Exciton Wave Function in Colloidal CdSe/CdS Nanocrystalscitations
- 2009Colloidal semiconductor quantum dots : from synthesis to photonic applications
Places of action
Organizations | Location | People |
---|
article
Single-photon emitting arrays by capillary assembly of colloidal semiconductor CdSe/CdS/SiO2 nanocrystals
Abstract
The controlled placement of colloidal semiconductor nanocrystals (NCs) onto planar surfaces is crucial for scalable fabrication of single-photon emitters on-chip, which are critical elements of optical quantum computing, communication, and encryption. The positioning of colloidal semiconductor NCs such as metal chalcogenides or perovskites is still challenging, as it requires a nonaggressive fabrication process to preserve the optical properties of the NCs. In this work, periodic arrays of 2500 nanoholes are patterned by electron beam lithography in a poly(methyl methacrylate) (PMMA) thin film on indium tin oxide/glass substrates. Colloidal core/shell CdSe/CdS NCs, functionalized with a SiO2 capping layer to increase their size and facilitate deposition into 100 nm holes, are trapped with a close to optimal Poisson distribution into the PMMA nanoholes via a capillary assembly method. The resulting arrays of NCs contain hundreds of single-photon emitters each. We believe this work paves the way to an affordable, fast, and practical method for the fabrication of nanodevices, such as singlephoton-emitting light-emitting diodes based on colloidal semiconductor NCs.