Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ahrens, Alexander

  • Google
  • 1
  • 3
  • 8

Aarhus University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Perspective on the Development of Monomer Recovery Technologies from Plastics Designed to Last8citations

Places of action

Chart of shared publication
Kristensen, Steffan Kvist
1 / 1 shared
Skrydstrup, Troels
1 / 6 shared
Donslund, Bjarke S.
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Kristensen, Steffan Kvist
  • Skrydstrup, Troels
  • Donslund, Bjarke S.
OrganizationsLocationPeople

article

Perspective on the Development of Monomer Recovery Technologies from Plastics Designed to Last

  • Kristensen, Steffan Kvist
  • Skrydstrup, Troels
  • Donslund, Bjarke S.
  • Ahrens, Alexander
Abstract

In order to prevent the current unsustainable waste handling of the enormous volumes of end-of-use organic polymer material sent to landfilling or incineration, extensive research efforts have been devoted toward the development of appropriate solutions for the recycling of commercial thermoset polymers. The inability of such cross-linked polymers to be remelted once cured implies that mechanical recycling processes used for thermoplastic materials do not translate to the recycling of thermoset polymers. Moreover, the structural diversity within the materials from the use of different monomers as well as the use of such polymers for the fabrication of fiber-reinforced polymer composites make recycling of these materials highly challenging. In this Perspective, depolymerization strategies for thermoset polymers are discussed with an emphasis on recent advancements within our group on recovering polymer building blocks from polyurethane (PU) and epoxy-based materials. While these two represent the largest thermoset polymer groups with respect to the production volumes, the recycling landscapes for these classes of materials are vastly different. For PU, increased collaboration between academia and industry has resulted in major advancements within solvolysis, acidolysis, aminolysis, and split-phase glycolysis for polyol recovery, where several processes are being evaluated for further scaling studies. For epoxy-based materials, the molecular skeleton has no obvious target for chemical scission. Nevertheless, we have recently demonstrated the possibility of the disassembly of the epoxy polymer in fiber-reinforced composites for bisphenol A (BPA) recovery through catalytic C-O bond cleavage. Furthermore, a base promoted cleavage developed by us and others shows tremendous potential for the recovery of BPA from epoxy polymers. Further efforts are still required for evaluating the suitability of such monomer recovery strategies for epoxy materials at an industrial scale. Nonetheless, recent advancements as illustrated ...

Topics
  • phase
  • resin
  • thermoset
  • thermoplastic
  • fiber-reinforced composite