People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Popov, Georgi
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Atomic Layer Deposition of Molybdenum Carbide Thin Filmscitations
- 2024Atomic Layer Deposition of Molybdenum Carbide Thin Filmscitations
- 2024Area-Selective Etching of Poly(methyl methacrylate) Films by Catalytic Decompositioncitations
- 2023Area-Selective Etching of Poly(methyl methacrylate) Films by Catalytic Decompositioncitations
- 2023Conversion of ALD CuO Thin Films into Transparent Conductive p-Type CuI Thin Filmscitations
- 2023Atomic Layer Deposition and Pulsed Chemical Vapor Deposition of SnI2 and CsSnI3citations
- 2023Atomic Layer Deposition and Pulsed Chemical Vapor Deposition of SnI2 and CsSnI3citations
- 2022Atomic layer deposition of PbCl2, PbBr2 and mixed lead halide (Cl, Br, I) PbXnY2-n thin filmscitations
- 2022Atomic Layer Deposition of CsI and CsPbI3citations
- 2021Oxidative MLD of Conductive PEDOT Thin Films with EDOT and ReCl5 as Precursorscitations
- 2021Oxidative MLD of Conductive PEDOT Thin Films with EDOT and ReCl5 as Precursorscitations
- 2020Atomic Layer Deposition of PbS Thin Films at Low Temperaturescitations
- 2020Van der Waals epitaxy of continuous thin films of 2D materials using atomic layer deposition in low temperature and low vacuum conditionscitations
- 2019Atomic Layer Deposition of Photoconductive Cu2O Thin Filmscitations
- 2019Atomic Layer Deposition of PbI₂ Thin Filmscitations
- 2019Atomic Layer Deposition of Emerging 2D Semiconductors, HfS2 and ZrS2, for Optoelectronicscitations
- 2016Scalable Route to the Fabrication of CH3NH3PbI3 Perovskite Thin Films by Electrodeposition and Vapor Conversion.citations
Places of action
Organizations | Location | People |
---|
article
Atomic Layer Deposition of Photoconductive Cu2O Thin Films
Abstract
Herein, we report an atomic layer deposition (ALD) process for Cu2O thin films using copper(II) acetate [Cu(OAc)(2)] and water vapor as precursors. This precursor combination enables the deposition of phase-pure, polycrystalline, and impurity-free Cu2O thin films at temperatures of 180-220 degrees C. The deposition of Cu(I) oxide films from a Cu(II) precursor without the use of a reducing agent is explained by the thermally induced reduction of Cu(OAc)(2) to the volatile copper(I) acetate, CuOAc. In addition to the optimization of ALD process parameters and characterization of film properties, we studied the Cu2O films in the fabrication of photoconductor devices. Our proof-of-concept devices show that approx- imately 20 nm thick Cu2O films can be used for photodetection in the visible wavelength range and that the thin film photoconductors exhibit improved device characteristics in comparison to bulk Cu2O crystals. ; Peer reviewed