People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mellor, Brian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2021Mechanism of oil-lubrication of PEEK and its composites with steel counterpartscitations
- 2020Hydrocarbon lubricants can control hydrogen embrittlementcitations
- 2019Effect of lubrication on friction and wear properties of PEEK with steel counterpartscitations
- 2019Formation of surface deposits on steel and titanium aviation fuel tubes under real operating conditionscitations
- 2019High-resolution 3D weld toe stress analysis and ACPD method for weld toe fatigue crack initiationcitations
- 20153-D analysis of fatigue crack behaviour in a shot peened steam turbine blade materialcitations
Places of action
Organizations | Location | People |
---|
article
Formation of surface deposits on steel and titanium aviation fuel tubes under real operating conditions
Abstract
In this study, stainless steel and titanium (Ti) tubes obtained from a turbofan engine after the end of its lifetime were analyzed in order to compare the amount of pyrolytic coke present and its influence on the parent, base material. Various analytical techniques including microhardness and topographical evaluations, optical emission spectrometry (OES), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) were applied. On steel surfaces, a thick pyrolytic coke deposition layer consisting of carbon and oxygen and also containing elements from the tube material, fuel, and fuel additives was found. The concentration of elements from the pyrolytic coke continuously decreased with distance from the surface of the deposit, while the concentrations of elements from the tube material continuously increased, with the concentrations of elements from the fuel and the fuel additives being relatively constant. With ultrasonic cleaning in distilled water, most of the deposits could be removed. Only carbon-rich patches with a thickness of more than 300 nm remained adhered to the surface and/or had diffused into the original material. On Ti surfaces, the thickness of the C-rich fuel deposit layer was significantly thinner as compared to that on the stainless steel; however, the surface was covered with an -3 μm-thick oxide layer, which consisted of elements from the fuel additives. It is believed that the beneficial properties of Ti covered with a thin layer of TiO 2 , such as low adhesion and/or surface energy, have promoted different deposition mechanisms compared to those of stainless steel and thus prevented pyrolytic coke deposition and the related material deterioration observed on stainless steel.