Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gélvez-Rueda, María C.

  • Google
  • 6
  • 29
  • 650

Institute for Atomic and Molecular Physics

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2022Perovskite Solar Cells: Stable under Space Conditions24citations
  • 2020Mechanochemical Synthesis of Sn(II) and Sn(IV) Iodide Perovskites and Study of Their Structural, Chemical, Thermal, Optical and Electrical Properties48citations
  • 2018Multi-layered hybrid perovskites templated with carbazole derivatives: optical properties, enhanced moisture stability and solar cell characteristics48citations
  • 2018Band-Like Charge Transport in Cs2AgBiBr6 and Mixed Antimony-Bismuth Cs2AgBi1- xSbxBr6 Halide Double Perovskites101citations
  • 2017Direct-indirect character of the bandgap in methylammonium lead iodide perovskite.citations
  • 2017Direct-indirect character of the bandgap in methylammonium lead iodide perovskite429citations

Places of action

Chart of shared publication
Igual-Muñoz, Ana M.
1 / 3 shared
Grozema, Ferdinand C.
5 / 9 shared
Savenije, Tom J.
4 / 36 shared
Bolink, Henk
2 / 45 shared
Zimmermann, Claus
1 / 2 shared
Dreessen, Chris
1 / 6 shared
Pérez-Del-Rey, Daniel
1 / 8 shared
Van Den Hengel, Lennart
1 / 1 shared
Prato, Mirko
1 / 45 shared
Sessolo, Michele
1 / 34 shared
El Ajjouri, Yousra
1 / 8 shared
Locardi, Federico
1 / 7 shared
Ferretti, Maurizio
1 / 25 shared
Palazón Huet, Francisco
1 / 15 shared
Herckens, Roald
1 / 3 shared
Song, Wenya
1 / 6 shared
Lutsen, Laurence
1 / 93 shared
Maufort, Arthur
1 / 8 shared
Ruttens, Bart
1 / 16 shared
Aernouts, Tom
1 / 19 shared
Vanderzande, Dirk
1 / 88 shared
Dhaen, Jan
1 / 78 shared
Grozema, Ferdinand
1 / 1 shared
Van Gompel, Wouter
1 / 5 shared
Bartesaghi, Davide
1 / 9 shared
Hutter, Eline M.
3 / 33 shared
Bulović, Vladimir
2 / 11 shared
Osherov, Anna
2 / 7 shared
Stranks, Samuel D.
1 / 101 shared
Chart of publication period
2022
2020
2018
2017

Co-Authors (by relevance)

  • Igual-Muñoz, Ana M.
  • Grozema, Ferdinand C.
  • Savenije, Tom J.
  • Bolink, Henk
  • Zimmermann, Claus
  • Dreessen, Chris
  • Pérez-Del-Rey, Daniel
  • Van Den Hengel, Lennart
  • Prato, Mirko
  • Sessolo, Michele
  • El Ajjouri, Yousra
  • Locardi, Federico
  • Ferretti, Maurizio
  • Palazón Huet, Francisco
  • Herckens, Roald
  • Song, Wenya
  • Lutsen, Laurence
  • Maufort, Arthur
  • Ruttens, Bart
  • Aernouts, Tom
  • Vanderzande, Dirk
  • Dhaen, Jan
  • Grozema, Ferdinand
  • Van Gompel, Wouter
  • Bartesaghi, Davide
  • Hutter, Eline M.
  • Bulović, Vladimir
  • Osherov, Anna
  • Stranks, Samuel D.
OrganizationsLocationPeople

article

Band-Like Charge Transport in Cs2AgBiBr6 and Mixed Antimony-Bismuth Cs2AgBi1- xSbxBr6 Halide Double Perovskites

  • Gélvez-Rueda, María C.
  • Grozema, Ferdinand C.
  • Savenije, Tom J.
  • Bartesaghi, Davide
  • Hutter, Eline M.
Abstract

<p>Recently, halide double perovskites (HDPs), such as Cs<sub>2</sub>AgBiBr<sub>6</sub>, have been reported as promising nontoxic alternatives to lead halide perovskites. However, it remains unclear whether the charge-transport properties of these materials are as favorable as for lead-based perovskites. In this work, we study the mobilities of charges in Cs<sub>2</sub>AgBiBr<sub>6</sub> and in mixed antimony-bismuth Cs<sub>2</sub>AgBi<sub>1-x</sub>Sb<sub>x</sub>Br<sub>6</sub>, in which the band gap is tunable from 2.0 to 1.6 eV. Using temperature-dependent time-resolved microwave conductivity techniques, we find that the mobility is proportional to T<sup>-p</sup> (with p ≈ 1.5). Importantly, this indicates that phonon scattering is the dominant scattering mechanism determining the charge carrier mobility in these HDPs similar to the state-of-the-art lead-based perovskites. Finally, we show that wet chemical processing of Cs<sub>2</sub>AgBi<sub>1-x</sub>Sb<sub>x</sub>Br<sub>6</sub> powders is a successful route to prepare thin films of these materials, which paves the way toward photovoltaic devices based on nontoxic HDPs with tunable band gaps.</p>

Topics
  • perovskite
  • impedance spectroscopy
  • mobility
  • thin film
  • Bismuth
  • Antimony
  • time-resolved microwave conductivity