Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Veen, Sandra J.

  • Google
  • 3
  • 7
  • 48

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2017Revealing and Quantifying the Three-Dimensional Nano- and Microscale Structures in Self-Assembled Cellulose Microfibrils in Dispersions12citations
  • 2015Microstructure and rheology of microfibril-polymer networks16citations
  • 2014Phase transitions in cellulose microfibril dispersions by high-energy mechanical deagglomeration20citations

Places of action

Chart of shared publication
Velikov, Krassimir Petkov
3 / 13 shared
Blaaderen, Alfons Van
1 / 7 shared
Mohan, Srivatssan
1 / 2 shared
Kuijk, Anke
3 / 4 shared
Jose, Jissy
1 / 1 shared
Versluis, Peter
2 / 2 shared
Husken, Henk
1 / 1 shared
Chart of publication period
2017
2015
2014

Co-Authors (by relevance)

  • Velikov, Krassimir Petkov
  • Blaaderen, Alfons Van
  • Mohan, Srivatssan
  • Kuijk, Anke
  • Jose, Jissy
  • Versluis, Peter
  • Husken, Henk
OrganizationsLocationPeople

article

Revealing and Quantifying the Three-Dimensional Nano- and Microscale Structures in Self-Assembled Cellulose Microfibrils in Dispersions

  • Velikov, Krassimir Petkov
  • Blaaderen, Alfons Van
  • Mohan, Srivatssan
  • Kuijk, Anke
  • Jose, Jissy
  • Veen, Sandra J.
Abstract

<p>Cellulose microfibrils (CMFs) are an important nanoscale building block in many novel biobased functional materials. The spatial nano- and microscale organization of the CMFs is a crucial factor for defining the properties of these materials. Here, we report for the first time a direct three-dimensional (3D) real-space analysis of individual CMFs and their networks formed after ultrahigh-shear-induced transient deagglomeration and self-assembly in a solvent. Using point-scanning confocal microscopy combined with tracking the centerlines of the fibrils and their junctions by a stretching open active contours method, we reveal that dispersions of the native CMFs assemble into highly heterogeneous networks of individual fibrils and bundles. The average network mesh size decreases with increasing CMF volume fraction. The cross-sectional width and the average length between the twists in the ribbon-shaped CMFs are directly determined and compared well with that of fibrils in the dried state. Finally, the generality of the fluorescent labeling and imaging approach on other CMF sources is illustrated. The unique ability to quantify in situ the multiscale structure in CMF dispersions provides a powerful tool for the correlation of process-structure-property relationship in cellulose-containing composites and dispersions.</p>

Topics
  • impedance spectroscopy
  • dispersion
  • composite
  • cellulose
  • self-assembly
  • confocal microscopy