People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pir, İnci
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Mechanical Enhancement and Water Treatment Efficiency of Nanocomposite PES Membranes : A Study on Akçay Dam Water Filtration Application
- 2024Mechanical Enhancement and Water Treatment Efficiency of Nanocomposite PES Membranes: A Study on Akçay Dam Water Filtration Applicationcitations
- 2024Nonlinear behaviour of epoxy and epoxy-based nanocomposites: an integrated experimental and computational analysiscitations
- 2024Nonlinear behaviour of epoxy and epoxy-based nanocomposites: an integrated experimental and computational analysiscitations
- 2024Effect of Promising Sustainable Nano-Reinforcements on Polysulfone/Polyvinylpyrrolidone-Based Membranes: Enhancing Mechanical Properties and Water Filtration Performance
- 2024Heavy Metal Rejection Performance and Mechanical Performance of Cellulose Nanofibril Reinforced Cellulose Acetate Membranes
- 2023Low strain rate mechanical performance of balsa wood and carbon fibre-epoxy-balsa sandwich structurescitations
- 2022Characterisation and Mechanical Modelling of Polyacrylonitrile-Based Nanocomposite Membranes Reinforced with Silica Nanoparticlescitations
- 2021Manufacturing and characterisation of polymeric membranes for water treatment and numerical investigation of mechanics of nanocomposite membranescitations
Places of action
Organizations | Location | People |
---|
article
Mechanical Enhancement and Water Treatment Efficiency of Nanocomposite PES Membranes: A Study on Akçay Dam Water Filtration Application
Abstract
Polymeric membranes are widely used in water treatment because of their ease of fabrication and low cost. The flux and purification performance of membranes can be significantly improved by incorporating appropriate amounts of nanomaterials into the polymeric membrane matrices. In this study, neat poly(ether sulfone) (PES), PES/nano copper oxide (CuO), and PES/nano zinc oxide (ZnO) membranes are fabricated via phase inversion. The pure water flux of the neat PES membrane, which is 355.14 L/m2·h, is increased significantly with the addition of nano-CuO and nano-ZnO, and the pure water fluxes of the nanocomposite membranes vary in the range of 392.65–429.74 L/m2·h. Moreover, nano CuO and nano ZnO-doped PES nanocomposite membranes exhibit higher conductivity, color, total organic carbon, boron, iron, selenium, barium, and total chromium removal efficiencies than neat PES membranes. The membrane surfaces examined by Scanning Electron Microscopy (SEM) after water filtration revealed that those containing 0.5% wt. nano CuO and nano ZnO are more resistant to fouling than the membrane surfaces containing 1% wt. nano CuO and nano ZnO. Based on the results of this study, 0.5% wt. nano ZnO-doped PES membrane is found to be the most suitable membrane for use in water treatment due to its high pure water flux (427.14 L/m2·h), high pollutant removal efficiency, and high fouling resistance. When the mechanical properties of the membranes are examined, the addition of CuO and ZnO nanoparticles increases the membrane stiffness and modulus of elasticity. The addition of 0.5% and 1% for CuO leads to an increase in the modulus of elasticity by 57.95% and 324.43%, respectively, while the addition of 0.5% and 1% for ZnO leads to an increase in the modulus of elasticity by 480.68% and 1802.43%, respectively. At the same time, the tensile strength of the membranes also increases with the addition of nanomaterials.