People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yildiz, M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2025Assessing the fracture and dynamic mechanical performance of CF/PEKK joints bonded with epoxy-based adhesive film for aerospace applications: impact of thermal and cycling hygrothermal conditions
- 2024Annealing impact on mechanical performance and failure analysis assisted with acoustic inspection of carbon fiber reinforced poly‐ether‐ketone‐ketone composites under flexural and compressive loads
- 2024Comprehensive Analysis of Damage Progression in High-performance Thermoplastic Composites Through Multi-instrumental Structural Health Monitoring Approaches
- 2024Palladium Metal Nanocomposites Based on PEI-Functionalized Nitrogen-Doped Graphene Quantum Dots: Synthesis, Characterization, Density Functional Theory Modeling, and Cell Cycle Arrest Effects on Human Ovarian Cancer Cells.citations
- 2023A novel damage evaluation of CFRPs under mode-I loading by using multi-instrument structural health monitoring methodscitations
- 2023Buckling and fracture analysis of thick and long composite cylinders with cutouts under axial Compression: An experimental and numerical campaigncitations
- 2022Solidification behaviour of austenitic stainless steels during welding and directed energy depositioncitations
- 2021Damage growth and failure detection in hybrid fiber composites using experimental in-situ optical strain measurements and smoothing element analysiscitations
- 2021Failure sequence determination in sandwich structures using concurrent acoustic emission monitoring and postmortem thermographycitations
- 2020A smoothed iFEM approach for efficient shape-sensing applications: Numerical and experimental validation on composite structurescitations
- 2020An experimental implementation of inverse finite element method for real-time shape and strain sensing of composite and sandwich structurescitations
- 2019Microscopic analysis of failure in woven carbon fabric laminates coupled with digital image correlation and acoustic emissioncitations
Places of action
Organizations | Location | People |
---|
article
Palladium Metal Nanocomposites Based on PEI-Functionalized Nitrogen-Doped Graphene Quantum Dots: Synthesis, Characterization, Density Functional Theory Modeling, and Cell Cycle Arrest Effects on Human Ovarian Cancer Cells.
Abstract
In this study, the synthesis, characterization, density functional theory calculations (DFT), and effect of polyethylenimine (PEI)-functionalized nitrogen-doped graphene quantum dots (PEI N-GQDs) and their palladium metal nanoparticles nanocomposites (PdNPs/PEI N-GQDs) on cancer cells were extensively investigated. The focus also includes investigating their cytotoxic and apoptotic effects on ovarian cancer cells, which pose a serious risk to women's health and have high death rates from delayed diagnosis, inadequate response to treatment, and decreased survival. Graphene quantum dots and their palladium nanocomposites were differentially effective against ovarian cancer cell lines. In particular, the smaller particle size and morphology of PdNPs/PEI N-GQDs nanocomposites compared with PEI N-GQDs probably enhance their activity through highly improved uptake by cells. These findings emphasize the importance of particle size in composite drugs for efficient cancer treatment. DFT results revealed that the Pd-containing nanocomposite, with a smaller highest occupied molecular orbital-lowest unoccupied molecular orbital gap, exhibited higher reactivity and anticancer effects in human ovarian cancer cell line, OVCAR-3. Significantly, the application of nanocomposites to ovarian cancer cells initiated apoptosis, offering valuable insights into the intricate interplay between nanomaterials and cancer biology.