Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Grüning, Myrta

  • Google
  • 6
  • 9
  • 107

Universidad de Cantabria

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Effective band structure and crack formation analysis in pseudomorphic epitaxial growth of (In x Ga 1–x ) 2 O 3 alloys: a first-principles studycitations
  • 2024Effective band structure and crack formation analysis in pseudomorphic epitaxial growth of (InxGa1–x)2O3 alloys: a first-principles studycitations
  • 2023QSGŴ:Quasiparticle self-consistent GW with ladder diagrams in W31citations
  • 2023QSG Ŵ: Quasiparticle self-consistent GW with ladder diagrams in W31citations
  • 2023QSG Ŵ: Quasiparticle self-consistent GW with ladder diagrams in W31citations
  • 2020GW study of pressure-induced topological insulator transition in group-IV tellurides14citations

Places of action

Chart of shared publication
Stella, Lorenzo
2 / 7 shared
Fadla, Mohamed Abdelilah
2 / 4 shared
Van Schilfgaarde, Mark
2 / 24 shared
Cunningham, Brian
2 / 4 shared
Pashov, Dimitar
3 / 8 shared
Schilfgaarde, Mark Van
1 / 2 shared
Cunningham, Brian
1 / 2 shared
Fahy, Stephen
1 / 1 shared
Aguado-Puente, Pablo
1 / 2 shared
Chart of publication period
2024
2023
2020

Co-Authors (by relevance)

  • Stella, Lorenzo
  • Fadla, Mohamed Abdelilah
  • Van Schilfgaarde, Mark
  • Cunningham, Brian
  • Pashov, Dimitar
  • Schilfgaarde, Mark Van
  • Cunningham, Brian
  • Fahy, Stephen
  • Aguado-Puente, Pablo
OrganizationsLocationPeople

article

Effective band structure and crack formation analysis in pseudomorphic epitaxial growth of (InxGa1–x)2O3 alloys: a first-principles study

  • Stella, Lorenzo
  • Grüning, Myrta
  • Fadla, Mohamed Abdelilah
Abstract

Ga<sub>2</sub>O<sub>3</sub> is a promising material for power electronic applications. Alloying with In<sub>2</sub>O<sub>3</sub> is used for band gap adjustment and reduction of the lattice mismatch. In this study, we calculate the effective band structure of 160-atom (In<sub>x</sub>Ga<sub>1–x</sub>)<sub>2</sub>O<sub>3</sub> supercells generated using special quasi-random structures where indium atoms preferentially substitute octahedral gallium sites in β-Ga<sub>2</sub>O<sub>3</sub>. We find that the disorder has a minimal effect on the lower conduction bands and does not introduce defect states. Employing the Heyd, Scuseria, and Ernzerhof (HSE06) hybrid functional, we accurately model the band gap, which remains indirect for all considered indium fractions, x, linearly decreasing from 4.8 to 4.24 eV in the range of x ∈ [0, 0.31]. Accordingly, the electron effective mass also decreases slightly and linearly. We determined the critical thickness for epitaxial growth of the (In<sub></sub>Ga<sub>1−</sub>)<sub>2</sub>O<sub>3</sub> alloys over β-Ga<sub>2</sub>O<sub>3 </sub>surfaces along the [100], [010], and [001] directions. Our findings offer new insights into site preference, effective band structure, and crack formation within (In<sub></sub>Ga<sub>1−</sub>)<sub>2</sub>O<sub>3</sub> alloys.<br/><br/><br/>

Topics
  • impedance spectroscopy
  • surface
  • crack
  • random
  • band structure
  • Gallium
  • Indium