Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Assi, Dani S.

  • Google
  • 11
  • 18
  • 99

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 20242D MXene Interface Engineered Bismuth Telluride Thermoelectric Module with Improved Efficiency for Waste Heat Recovery5citations
  • 2023Facile composite engineering to boost thermoelectric power conversion in ZnSb device6citations
  • 2023Facile composite engineering to boost thermoelectric power conversion in ZnSb device6citations
  • 20233D Architectural MXene‐based Composite Films for Stealth Terahertz Electromagnetic Interference Shielding Performance10citations
  • 2023Dispersion of InSb Nanoinclusions in Cu<sub>3</sub>SbS<sub>4</sub> for Improved Stability and Thermoelectric Efficiency6citations
  • 2023Dispersion of InSb nanoinclusions in Cu3SbS4 for improved stability and thermoelectric efficiency6citations
  • 20233D architectural MXene composite films for stealth terahertz shielding performance10citations
  • 2022Insights into the classification of nanoinclusions of composites for thermoelectric applications13citations
  • 2022Probing the Effect of MWCNT Nanoinclusions on the Thermoelectric Performance of Cu3SbS4 Composites12citations
  • 2022Insights into the Classification of Nanoinclusions of Composites for Thermoelectric Applications13citations
  • 2022Probing the effect of MWCNT nanoinclusions on the thermoelectric performance of Cu3SbS4 composites12citations

Places of action

Chart of shared publication
Karthikeyan, Vaithinathan
11 / 17 shared
Kannan, Venkatramanan
1 / 2 shared
Vellaisamy, Arul Lenus Roy
6 / 18 shared
Huang, Hongli
5 / 5 shared
Shek, Chanhung
2 / 2 shared
Chen, Yue
1 / 3 shared
Kannan, Venkataramanan
2 / 2 shared
Kandira, Kadir Ufuk
2 / 2 shared
Nayak, Sanjib
2 / 7 shared
Theja, Vaskuri C. S.
6 / 7 shared
Roy, Vellaisamy A. L.
5 / 10 shared
Alsulami, Raghad Saud
2 / 2 shared
Chen, Bao-Jie
1 / 1 shared
Shek, Chan-Hung
3 / 3 shared
Chen, Bao Jie
1 / 1 shared
Chan, Chi-Hou
1 / 1 shared
Saianand, Gopalan
1 / 7 shared
Gopalan, Saianand
1 / 1 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Karthikeyan, Vaithinathan
  • Kannan, Venkatramanan
  • Vellaisamy, Arul Lenus Roy
  • Huang, Hongli
  • Shek, Chanhung
  • Chen, Yue
  • Kannan, Venkataramanan
  • Kandira, Kadir Ufuk
  • Nayak, Sanjib
  • Theja, Vaskuri C. S.
  • Roy, Vellaisamy A. L.
  • Alsulami, Raghad Saud
  • Chen, Bao-Jie
  • Shek, Chan-Hung
  • Chen, Bao Jie
  • Chan, Chi-Hou
  • Saianand, Gopalan
  • Gopalan, Saianand
OrganizationsLocationPeople

article

Probing the Effect of MWCNT Nanoinclusions on the Thermoelectric Performance of Cu3SbS4 Composites

  • Karthikeyan, Vaithinathan
  • Assi, Dani S.
  • Vellaisamy, Arul Lenus Roy
  • Saianand, Gopalan
Abstract

Recently, copper-based chalcogenides, especially sulfides, have attracted considerable attention due to their inexpensive, earth-abundance, nontoxicity, and good thermoelectric performance. Cu<sub style="background-color: rgb(255, 255, 255);">3</sub>SbS<sub style="background-color: rgb(255, 255, 255);">4</sub> is one such kind with p-type conductivity and high phase stability for potential medium-temperature applications. In this article, the effect of a multiwalled carbon nanotube (MWCNT) on the thermoelectric parameters of Cu<sub style="background-color: rgb(255, 255, 255);">3</sub>SbS<sub style="background-color: rgb(255, 255, 255);">4</sub> is studied. A facile synthesis route of mechanical alloying (MA), followed by hot pressing (HP) was utilized to achieve dense and fine-grain samples. Adding the optimal amount of MWCNT nanoinclusions in Cu<sub style="background-color: rgb(255, 255, 255);">3</sub>SbS<sub style="background-color: rgb(255, 255, 255);">4</sub> enhanced the Seebeck coefficient by carrier energy filtering and reduced the thermal conductivity by strong phonon scattering mechanisms. This synergistic optimization helped achieve the maximum figure of merit (<i>ZT</i>) of 0.43 in the 3 mol % MWCNT nanoinclusion composite sample, which is 70% higher than the pristine Cu<sub style="background-color: rgb(255, 255, 255);">3</sub>SbS<sub style="background-color: rgb(255, 255, 255);">4</sub> at 623 K. In addition, enhancement in mechanical stability is observed with the increasing nanoinclusion concentration. Dispersion strengthening and grain boundary hardening mechanisms help improve mechanical stability in the nanocomposite samples. Apart from the enhanced mechanical stability, our study highlights that the incorporation of multiwalled CNT nanoinclusions boosted the thermoelectric performance of Cu<sub style="background-color: rgb(255, 255, 255);">3</sub>SbS<sub style="background-color: rgb(255, 255, 255);">4</sub>, and the same strategy can be extended to other next-generation and conventional thermoelectric materials.

Topics
  • nanocomposite
  • impedance spectroscopy
  • dispersion
  • Carbon
  • grain
  • phase
  • grain boundary
  • nanotube
  • copper
  • thermal conductivity
  • hot pressing
  • phase stability