People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nawaz, Tehseen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Strategic Fabrication of Au4Cu2 NC/ZIF-8 Composite Via In Situ Integration Technique for Enhanced Energy Storage Applicationscitations
- 2024In situ synthesis of oriented Zn-Mn-Co-telluride on precursor free CuOcitations
- 2023Experimental and theoretical insights of binder-free magnesium nickel cobalt selenide star-like nanostructure as electrodecitations
- 2023Structural study of atomically precise doped Au38-xAgx NCs@ ZIF-8 electrode material for energy storage applicationcitations
- 2023Understanding the Diffusion-Dominated Properties of MOF-Derived Ni–Co–Se/C on CuO Scaffold Electrode using Experimental and First Principle Studycitations
- 2022Fabrication of Bimetallic Cu-Ag Nanoparticle-Decorated Poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) and Its Enhanced Catalytic Activity for the Reduction of 4-Nitrophenolcitations
- 2022Comparative study of ternary metal chalcogenides (MX; M= Zn–Co–Ni; X= S, Se, Te)citations
- 2022Factors affecting the growth formation of nanostructures and their impact on electrode materialscitations
Places of action
Organizations | Location | People |
---|
article
Fabrication of Bimetallic Cu-Ag Nanoparticle-Decorated Poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) and Its Enhanced Catalytic Activity for the Reduction of 4-Nitrophenol
Abstract
We reported a study on the preparation of bimetallic Ag-Cu nanoparticles (NPs) impregnated on PZS poly(cyclotriphosphazene-<i>co</i>-4,4′-sulfonyldiphenol) nanotubes via a facile and efficient reduction method. Herein, PZS nanotubes consisting of enriched hydroxyl groups are fabricated through an in situ template method, and then, fluctuating the amount ratios of Cu and Ag precursors, bimetallic NPs can be fabricated on readily prepared PZS nanotubes using NaBH<sub>4</sub> as a reductant, which results in a series of bimetallic catalysts having tunable catalytic activity. The characterization investigations of scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy results show that Ag-Cu bimetallic NPs are well-dispersed, ultrasmall in size, and well-anchored on the surface of PZS nanotubes. In addition, to examine the catalytic activity and reusability of these nanocomposites, reduction of 4-nitrophenol to 4-aminophenol is utilized as a prototype reaction. The optimized Ag-Cu NPs with a copper ratio of 0.3% are well-stabilized by the organic-inorganic poly(cyclotriphosphazene-<i>co</i>-4,4′-sulfonyldiphenol) nanotubes. The obtained results show that bimetallic NPs have remarkably higher catalytic ability than that of their monometallic counterparts with maximum catalytic activity. These results are even better than those of noble metal-based bimetallic catalysts and pave the avenue to utilize the polyphosphazene polymer as a substrate material for highly effective bimetallic catalysts.