Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Monfort, Xavier Solans

  • Google
  • 2
  • 11
  • 88

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Influence of Aromatic Cations on the Structural Arrangement of Hg(II) Halides4citations
  • 2006Structural redetermination, thermal expansion and refractive indices of KLu(WO<inf>4</inf>)<inf>2</inf>84citations

Places of action

Chart of shared publication
Calvet, Teresa
1 / 7 shared
Sánchez-Férez, Francisco
1 / 1 shared
Font-Bardia, Mercè
1 / 8 shared
Pons, Josefina
1 / 13 shared
Massons, J.
1 / 2 shared
Aguiló, M.
1 / 1 shared
Díaz, F.
1 / 3 shared
Pujol, M. C.
1 / 2 shared
Suriñach, Santiago
1 / 31 shared
Mateos, X.
1 / 1 shared
Aznar, A.
1 / 1 shared
Chart of publication period
2020
2006

Co-Authors (by relevance)

  • Calvet, Teresa
  • Sánchez-Férez, Francisco
  • Font-Bardia, Mercè
  • Pons, Josefina
  • Massons, J.
  • Aguiló, M.
  • Díaz, F.
  • Pujol, M. C.
  • Suriñach, Santiago
  • Mateos, X.
  • Aznar, A.
OrganizationsLocationPeople

article

Influence of Aromatic Cations on the Structural Arrangement of Hg(II) Halides

  • Calvet, Teresa
  • Sánchez-Férez, Francisco
  • Font-Bardia, Mercè
  • Monfort, Xavier Solans
  • Pons, Josefina
Abstract

<p>Understanding the structure and arrangement of hybrid metal halides and their contribution to the optoelectronic properties is, thus far, a challenging topic. In particular, new materials composed of d10 metal halides and pyridinium cations are still largely unexplored. Therefore, we report the synthesis and characterization of six Hg(II) salts built up from (Hg2Cl6)2- or (HgX4)2- anions (X = Cl, Br, I) and 2,2′-bipyridium (2,2′-Hbipy)+, 2,2′-bipyridine-1,1′-diium (2,2′-H2bipy)2+, or 1,10-phenantrolinium (1,10-Hphen)+ cations, using the same experimental conditions. All of them have been characterized by PXRD, EA, FTIR-ATR, and 1H NMR spectroscopies; single-crystal X-ray diffraction; and TG/DTA determinations. The study of their packing via Hirshfeld surface analysis and 3D deformation density mapping revealed the contributions of the intermolecular interactions to the structural arrangement, notably, the effect of the cation planarity on them. Successively, periodic DFT calculations showed that (i) the valence and conducting bands are mainly composed of the p orbitals of the halide and the organic cation, respectively, and (ii) the corresponding band gap depends mainly on the halide. </p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • x-ray diffraction
  • thermogravimetry
  • density functional theory
  • Nuclear Magnetic Resonance spectroscopy
  • differential thermal analysis
  • elemental analysis