Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Newbrook, Daniel W.

  • Google
  • 8
  • 24
  • 115

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2022Screen-printed bismuth telluride nanostructured composites for flexible thermoelectric applications21citations
  • 2022Development of thin-film chalcogenide materials deposited by LPCVD for thermoelectric energy generationcitations
  • 2021Low temperature CVD of thermoelectric SnTe thin films from the single source precursor, [nBu3Sn(TenBu)]9citations
  • 2021Low temperature CVD of thermoelectric SnTe thin films from the single source precursor, [nBu3Sn(TenBu)]9citations
  • 2020Thermoelectric properties of bismuth telluride thin films electrodeposited from a non-aqueous solution28citations
  • 2020Selective chemical vapor deposition approach for Sb2Te3 thin film micro-thermoelectric generators20citations
  • 2020Improved thermoelectric performance of Bi2Se3 alloyed Bi2Te3 thin films via low pressure chemical vapour deposition14citations
  • 2020Improved thermoelectric performance of Bi 2 Se 3 alloyed Bi 2 Te 3 thin films via low pressure chemical vapour deposition14citations

Places of action

Chart of shared publication
Yong, S.
1 / 2 shared
Sethi, Vikesh
1 / 4 shared
Nandhakumar, Iris
1 / 9 shared
Huang, R.
1 / 5 shared
Beeby, Steve
1 / 45 shared
Amin, A.
1 / 3 shared
Huang, Ruomeng
6 / 25 shared
De Groot, Cornelis
4 / 41 shared
Hector, Andrew Lee
4 / 50 shared
Robinson, Fred
2 / 6 shared
Curran, Peter
2 / 3 shared
Hardie, Duncan
2 / 2 shared
Reid, Gillian
6 / 50 shared
Hector, Andrew L.
2 / 12 shared
De Groot, Kees
1 / 7 shared
Zhang, Wenjian
1 / 12 shared
Bartlett, Philip N.
1 / 41 shared
Cicvarić, Katarina
1 / 3 shared
Meng, Lingcong
1 / 5 shared
Ye, Sheng
1 / 4 shared
Levason, William
3 / 25 shared
Richards, Stephen P.
3 / 6 shared
Greenacre, Victoria
3 / 12 shared
De Groot, C. H.
1 / 2 shared
Chart of publication period
2022
2021
2020

Co-Authors (by relevance)

  • Yong, S.
  • Sethi, Vikesh
  • Nandhakumar, Iris
  • Huang, R.
  • Beeby, Steve
  • Amin, A.
  • Huang, Ruomeng
  • De Groot, Cornelis
  • Hector, Andrew Lee
  • Robinson, Fred
  • Curran, Peter
  • Hardie, Duncan
  • Reid, Gillian
  • Hector, Andrew L.
  • De Groot, Kees
  • Zhang, Wenjian
  • Bartlett, Philip N.
  • Cicvarić, Katarina
  • Meng, Lingcong
  • Ye, Sheng
  • Levason, William
  • Richards, Stephen P.
  • Greenacre, Victoria
  • De Groot, C. H.
OrganizationsLocationPeople

article

Thermoelectric properties of bismuth telluride thin films electrodeposited from a non-aqueous solution

  • Zhang, Wenjian
  • Bartlett, Philip N.
  • Cicvarić, Katarina
  • Huang, Ruomeng
  • De Groot, Cornelis
  • Meng, Lingcong
  • Ye, Sheng
  • Hector, Andrew Lee
  • Newbrook, Daniel W.
  • Reid, Gillian
Abstract

We report the thermoelectric properties of Bi<sub>2</sub>Te<sub>3</sub> thin films electrodeposited from the weakly coordinating solvent dichloromethane (CH<sub>2</sub>Cl<sub>2</sub>). It was found that the oxidation of porous films is significant, causing the degradation of its thermoelectric properties. We show that the morphology of the film can be improved drastically by applying a short initial nucleation pulse, which generates a large number of nuclei, and then growing the nuclei by pulsed electrodeposition at a much lower overpotential. This significantly reduces the oxidation of the films as smooth films have a smaller surface-to-volume ratio and are less prone to oxidation. X-ray photoelectron spectroscopy (XPS) shows that those films with Te(O) termination show a complete absence of oxygen below the surface layer. A thin film transfer process was developed using polystyrene as a carrier polymer to transfer the films from the conductive TiN to an insulating layer for thermoelectrical characterization. Temperature-dependent Seebeck measurements revealed a room-temperature coefficient of −51.7 μV/K growing to nearly −100 μV/K at 520 °C. The corresponding power factor reaches a value of 88.2 μW/mK<sup>2</sup> at that temperature.

Topics
  • porous
  • impedance spectroscopy
  • surface
  • polymer
  • thin film
  • x-ray photoelectron spectroscopy
  • Oxygen
  • laser emission spectroscopy
  • tin
  • electrodeposition
  • Bismuth