People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zultak, Johanna
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2021Thermoelectric voltage modulation via backgate doping in graphene nanoconstrictions studied with STGM
- 2019Data for Indirect to direct gap crossover in two-dimensional InSe revealed by angle resolved photoemission spectroscopy
- 2019Indirect to direct gap crossover in two-dimensional InSe revealed by angle-resolved photoemission spectroscopycitations
- 2018Optoelectronics of new two-dimensional semiconductors
Places of action
Organizations | Location | People |
---|
article
Indirect to direct gap crossover in two-dimensional InSe revealed by angle-resolved photoemission spectroscopy
Abstract
Atomically thin films of III–VI post-transition metal chalcogenides (InSe and GaSe) form an interesting class of two-dimensional semiconductors that feature a strong variation of their band gap as a function of the number of layers in the crystal and, specifically for InSe, an expected crossover from a direct gap in the bulk to a weakly indirect band gap in monolayers and bilayers. Here, we apply angle-resolved photoemission spectroscopy with submicrometer spatial resolution (μARPES) to visualize the layer-dependent valence band structure of mechanically exfoliated crystals of InSe. We show that for one-layer and two-layer InSe the valence band maxima are away from the Γ-point, forming an indirect gap, with the conduction band edge known to be at the Γ-point. In contrast, for six or more layers the band gap becomes direct, in good agreement with theoretical predictions. The high-quality monolayer and bilayer samples enable us to resolve, in the photoluminescence spectra, the band-edge exciton (A) from the exciton (B) involving holes in a pair of deeper valence bands, degenerate at Γ, with a splitting that agrees with both μARPES data and the results of DFT modeling. Due to the difference in symmetry between these two valence bands, light emitted by the A-exciton should be predominantly polarized perpendicular to the plane of the two-dimensional crystal, which we have verified for few-layer InSe crystals.