People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gorbachev, Roman V.
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2020Atomic Resolution Imaging of CrBr 3 using Adhesion-Enhanced Gridscitations
- 2020Atomic Resolution Imaging of CrBr3 using Adhesion-Enhanced Gridscitations
- 2019Formation and healing of defects in atomically thin GaSe and InSecitations
- 2019Indirect to direct gap crossover in two-dimensional InSe revealed by angle-resolved photoemission spectroscopycitations
- 2018Infrared-to-violet tunable optical activity in atomic films of GaSe, InSe, and their heterostructurescitations
- 2018Unusual Suppression of the Superconducting Energy Gap and Critical Temperature in Atomically Thin NbSe2citations
- 2018Nanometer Resolution Elemental Mapping in Graphene-based TEM Liquid Cellscitations
- 2018Anomalous twin boundaries in two dimensional materialscitations
- 2017Observing imperfection in atomic interfaces for van der Waals heterostructurescitations
- 2016High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSecitations
- 2016High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSecitations
Places of action
Organizations | Location | People |
---|
article
Formation and healing of defects in atomically thin GaSe and InSe
Abstract
Two dimensional III–VI metal monochalcogenide materials, such as GaSe and InSe, are attracting considerable attention due to their promising electronic and optoelectronic properties. Here, an investigation of point and extended atomic defects formed in mono-, bi-, and few-layer GaSe and InSe crystals is presented. Using state-of-the-art scanning transmission electron microscopy, it is observed that these materials can form both metal and selenium vacancies under the action of the electron beam. Selenium vacancies are observed to be healable: recovering the perfect lattice structure in the presence of selenium or enabling incorporation of dopant atoms in the presence of impurities. Under prolonged imaging, multiple point defects are observed to coalesce to form extended defect structures, with GaSe generally developing trigonal defects and InSe primarily forming line defects. These insights into atomic behavior could be harnessed to synthesize and tune the properties of 2D post-transition-metal monochalcogenide materials for optoelectronic applications.