People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gruverman, Alexei
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Observation of Antiferroelectric Domain Walls in a Uniaxial Hyperferroelectriccitations
- 2024Observation of antiferroelectric domain walls in a uniaxial hyperferroelectriccitations
- 2024Observation of antiferroelectric domain walls in a uniaxial hyperferroelectriccitations
- 2024Observation of Antiferroelectric Domain Walls in a Uniaxial Hyperferroelectric.citations
- 2018Quasi-1D TiS 3 Nanoribbonscitations
- 2017Superdomain dynamics in ferroelectric-ferroelastic films: Switching, jamming and relaxationcitations
- 2017Superdomain dynamics in ferroelectric-ferroelastic films: Switching, jamming and relaxationcitations
- 2015Toward Ferroelectric Control of Monolayer MoS2citations
- 2015Nanomechanics of flexoelectric switchingcitations
- 2014Changing molecular band offsets in polymer blends of (P3HT/P(VDF-TrFE)) poly(3-hexylthiophene) and poly(vinylidene fluoride with trifluoroethylene) due to ferroelectric polingcitations
- 2012Understanding the effect of ferroelectric polarization on power conversion efficiency of organic photovoltaic devicescitations
- 2011Direct fabrication of arbitrary-shaped ferroelectric nanostructures on plastic, glass, and silicon substratescitations
Places of action
Organizations | Location | People |
---|
article
Quasi-1D TiS 3 Nanoribbons
Abstract
Quasi-one-dimensional (quasi-1D) materials enjoy growing interest due to their unusual physical properties and promise for miniature electronic devices. However, the mechanical exfoliation of quasi-1D materials into thin flakes and nanoribbons received considerably less attention from researchers than the exfoliation of conventional layered crystals. In this study, we investigated the micromechanical exfoliation of representative quasi-1D crystals, TiS<sub>3</sub>whiskers, and demonstrate that they typically split into narrow nanoribbons with very smooth, straight edges and clear signatures of 1D TiS<sub>3</sub>chains. Theoretical calculations show that the energies required for breaking weak interactions between the two-dimensional (2D) layers and between 1D chains within the layers are comparable and, in turn, are considerably lower than those required for breaking the covalent bonds within the chains. We also emulated macroscopic exfoliation experiments on the nanoscale by applying a local shear force to TiS<sub>3</sub>crystals in different crystallographic directions using a tip of an atomic force microscopy (AFM) probe. In the AFM experiments, it was possible to slide the 2D TiS<sub>3</sub>layers relative to each other as well as to remove selected 1D chains from the layers. We systematically studied the exfoliated TiS<sub>3</sub>crystals by Raman spectroscopy and identified the Raman peaks whose spectral positions were most dependent on the crystals' thickness. These results could be used to distinguish between TiS<sub>3</sub>crystals with thickness ranging from one to about seven monolayers. The conclusions established in this study for the exfoliated TiS<sub>3</sub>crystals can be extended to a variety of transition metal trichalcogenide materials as well as other quasi-1D crystals. The possibility of exfoliation of TiS<sub>3</sub>into narrow (few-nm wide) crystals with smooth edges could be important for the future realization of miniature device channels with reduced edge scattering of charge carriers.