Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aziza, Zeineb

  • Google
  • 1
  • 8
  • 182

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016van der Waals Epitaxy of GaSe/Graphene Heterostructure: Electronic and Interfacial Properties182citations

Places of action

Chart of shared publication
Pierucci, Debora
1 / 14 shared
Ouerghi, Abdelkarim
1 / 20 shared
Silly, Mathieu G.
1 / 11 shared
Henck, Hugo
1 / 6 shared
Patriarche, Gilles
1 / 62 shared
Lhuillier, Emmanuel
1 / 26 shared
Eddrief, Mahmoud
1 / 14 shared
Sirotti, Fausto
1 / 18 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Pierucci, Debora
  • Ouerghi, Abdelkarim
  • Silly, Mathieu G.
  • Henck, Hugo
  • Patriarche, Gilles
  • Lhuillier, Emmanuel
  • Eddrief, Mahmoud
  • Sirotti, Fausto
OrganizationsLocationPeople

article

van der Waals Epitaxy of GaSe/Graphene Heterostructure: Electronic and Interfacial Properties

  • Pierucci, Debora
  • Ouerghi, Abdelkarim
  • Silly, Mathieu G.
  • Henck, Hugo
  • Patriarche, Gilles
  • Lhuillier, Emmanuel
  • Eddrief, Mahmoud
  • Sirotti, Fausto
  • Aziza, Zeineb
Abstract

Stacking two-dimensional materials in so-called van der Waals (vdW) heterostructures, like the combination of GaSe and graphene, provides the ability to obtain hybrid systems that are suitable to design optoelectronic devices. Here, we report the structural and electronic properties of the direct growth of multilayered GaSe by molecular beam epitaxy on graphene. Reflection high-energy electron diffraction images exhibited sharp streaky features indicative of a high-quality GaSe layer produced via a vdW epitaxy. Micro-Raman spectroscopy showed that, after the vdW heterointerface formation, the Raman signature of pristine graphene is preserved. However, the GaSe film tuned the charge density of graphene layer by shifting the Dirac point by about 80 meV toward lower binding energies, attesting to an electron transfer from graphene to GaSe. Angle-resolved photoemission spectroscopy (ARPES) measurements showed that the maximum of the valence band of the few layers of GaSe are located at the Γ point at a binding energy of about −0.73 eV relative to the Fermi level (p-type doping). From the ARPES measurements, a hole effective mass defined along the ΓM direction and equal to about m*/m0 = −1.1 was determined. By coupling the ARPES data with high-resolution X-ray photoemission spectroscopy measurements, the Schottky interface barrier height was estimated to be 1.2 eV. These findings allow a deeper understanding of the interlayer interactions and the electronic structure of the GaSe/graphene vdW heterostructure.

Topics
  • density
  • impedance spectroscopy
  • electron diffraction
  • two-dimensional
  • interfacial
  • Raman spectroscopy
  • angle-resolved photoelectron spectroscopy