People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ouerghi, Abdelkarim
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Direct Reconstruction of the Band Diagram of Rhombohedral-Stacked Bilayer WSe 2 –Graphene Heterostructure via Photoemission Electron Microscopycitations
- 2024Stacking order and electronic band structure in MBE-grown trilayer WSe$_2$ filmscitations
- 2024Atomic‐Layer Controlled Transition from Inverse Rashba–Edelstein Effect to Inverse Spin Hall Effect in 2D PtSe<sub>2</sub> Probed by THz Spintronic Emissioncitations
- 2023Unidirectional Rashba spin splitting in single layer WS<sub>2(1−x)</sub>Se<sub>2x</sub> alloycitations
- 2023Quasi van der Waals Epitaxy of Rhombohedral-Stacked Bilayer WSe 2 on GaP(111) Heterostructurecitations
- 2023Intrinsic defects and mid-gap states in quasi-one-dimensional indium telluridecitations
- 2023Unidirectional Rashba Spin Splitting in Single Layer WS2(1-x)Se2x alloycitations
- 2023Electronic properties of rhombohedrally stacked bilayer W Se 2 obtained by chemical vapor depositioncitations
- 2022Evidence for highly p-type doping and type II band alignment in large scale monolayer WSe2/Se-terminated GaAs heterojunction grown by molecular beam epitaxycitations
- 2021Indirect to direct band gap crossover in two-dimensional WS2(1−x)Se2x alloyscitations
- 2021Indirect to direct band gap crossover in two-dimensional WS 2(1-x) Se 2x alloys
- 2020Time Resolved Photoemission to Unveil Electronic Coupling Between Absorbing and Transport Layers in a Quantum Dot Based Solar Cellcitations
- 2017Stacking fault and defects in single domain multilayered hexagonal boron nitridecitations
- 2017Interface dipole and band bending in the hybrid p − n heterojunction Mo S 2 / GaN ( 0001 )citations
- 2017Interface dipole and band bending in the hybrid p − n heterojunction Mo S 2 / GaN ( 0001 )citations
- 2017Direct observation of the band structure in bulk hexagonal boron nitridecitations
- 2017Probing Charge Carrier Dynamics to Unveil the Role of Surface Ligands in HgTe Narrow Band Gap Nanocrystalscitations
- 2017Electronic structure of CdSe-ZnS 2D nanoplateletscitations
- 2016van der Waals Epitaxy of GaSe/Graphene Heterostructure: Electronic and Interfacial Propertiescitations
- 2016Band Alignment and Minigaps in Monolayer MoS 2 ‑Graphene van der Waals Heterostructurescitations
Places of action
Organizations | Location | People |
---|
article
van der Waals Epitaxy of GaSe/Graphene Heterostructure: Electronic and Interfacial Properties
Abstract
Stacking two-dimensional materials in so-called van der Waals (vdW) heterostructures, like the combination of GaSe and graphene, provides the ability to obtain hybrid systems that are suitable to design optoelectronic devices. Here, we report the structural and electronic properties of the direct growth of multilayered GaSe by molecular beam epitaxy on graphene. Reflection high-energy electron diffraction images exhibited sharp streaky features indicative of a high-quality GaSe layer produced via a vdW epitaxy. Micro-Raman spectroscopy showed that, after the vdW heterointerface formation, the Raman signature of pristine graphene is preserved. However, the GaSe film tuned the charge density of graphene layer by shifting the Dirac point by about 80 meV toward lower binding energies, attesting to an electron transfer from graphene to GaSe. Angle-resolved photoemission spectroscopy (ARPES) measurements showed that the maximum of the valence band of the few layers of GaSe are located at the Γ point at a binding energy of about −0.73 eV relative to the Fermi level (p-type doping). From the ARPES measurements, a hole effective mass defined along the ΓM direction and equal to about m*/m0 = −1.1 was determined. By coupling the ARPES data with high-resolution X-ray photoemission spectroscopy measurements, the Schottky interface barrier height was estimated to be 1.2 eV. These findings allow a deeper understanding of the interlayer interactions and the electronic structure of the GaSe/graphene vdW heterostructure.