Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ludescher, L.

  • Google
  • 2
  • 29
  • 91

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017Quasi-epitaxial Metal-Halide Perovskite Ligand Shells on PbS Nanocrystals78citations
  • 2017Quantifying adsorption-induced deformation of nanoporous materials on different length scales13citations

Places of action

Chart of shared publication
Yakunin, Sergii
1 / 35 shared
Heiss, Wolfgang
1 / 221 shared
Killilea, N. A.
1 / 4 shared
Yakunin, S.
1 / 4 shared
Schöfberger, W.
1 / 2 shared
Sytnyk, M.
1 / 25 shared
Groiss, Heiko
1 / 14 shared
Groiss, H.
1 / 11 shared
Burian, M.
1 / 2 shared
Stangl, J.
1 / 8 shared
Kriegner, Dominik
1 / 28 shared
Ludescher, Lukas
1 / 3 shared
Lechner, Rainer T.
1 / 10 shared
Sytnykt, Mykhailo
1 / 1 shared
Yousefiamin, Amirabbas
1 / 2 shared
Stangl, Julian
1 / 16 shared
Schoefberger, Wolfgang
1 / 2 shared
Yousefiamin, A.
1 / 2 shared
Burian, Max
1 / 9 shared
Kriegner, D.
1 / 16 shared
Lechner, R. T.
1 / 8 shared
Killilea, Niall A.
1 / 1 shared
Paris, O.
1 / 34 shared
Busch, S.
1 / 4 shared
Putz, F.
1 / 1 shared
Reichenauer, G.
1 / 1 shared
Hüsing, N.
1 / 5 shared
Morak, R.
1 / 1 shared
Braxmeier, S.
1 / 1 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Yakunin, Sergii
  • Heiss, Wolfgang
  • Killilea, N. A.
  • Yakunin, S.
  • Schöfberger, W.
  • Sytnyk, M.
  • Groiss, Heiko
  • Groiss, H.
  • Burian, M.
  • Stangl, J.
  • Kriegner, Dominik
  • Ludescher, Lukas
  • Lechner, Rainer T.
  • Sytnykt, Mykhailo
  • Yousefiamin, Amirabbas
  • Stangl, Julian
  • Schoefberger, Wolfgang
  • Yousefiamin, A.
  • Burian, Max
  • Kriegner, D.
  • Lechner, R. T.
  • Killilea, Niall A.
  • Paris, O.
  • Busch, S.
  • Putz, F.
  • Reichenauer, G.
  • Hüsing, N.
  • Morak, R.
  • Braxmeier, S.
OrganizationsLocationPeople

article

Quasi-epitaxial Metal-Halide Perovskite Ligand Shells on PbS Nanocrystals

  • Yakunin, Sergii
  • Heiss, Wolfgang
  • Killilea, N. A.
  • Yakunin, S.
  • Schöfberger, W.
  • Sytnyk, M.
  • Ludescher, L.
  • Groiss, Heiko
  • Groiss, H.
  • Burian, M.
  • Stangl, J.
  • Kriegner, Dominik
  • Ludescher, Lukas
  • Lechner, Rainer T.
  • Sytnykt, Mykhailo
  • Yousefiamin, Amirabbas
  • Stangl, Julian
  • Schoefberger, Wolfgang
  • Yousefiamin, A.
  • Burian, Max
  • Kriegner, D.
  • Lechner, R. T.
  • Killilea, Niall A.
Abstract

Epitaxial growth techniques enable nearly defect free heterostructures with coherent interfaces, which are of utmost importance for high performance electronic devices. While high-vacuum technology-based growth techniques are state-of-the art, here we pursue a purely solution processed approach to obtain nanocrystals with eptaxially coherent and quasi-lattice matched inorganic ligand shells. Octahedral metal-halide clusters, respectively 0-dimensional perovskites, were employed as ligands to match the coordination geometry of the PbS cubic rock-salt lattice. Different clusters (CH3NH3+)(6–x)[M(x+)Hal6](6–x)– (Mx+ = Pb(II), Bi(III), Mn(II), In(III), Hal = Cl, I) were attached to the nanocrystal surfaces via a scalable phase transfer procedure. The ligand attachment and coherence of the formed PbS/ligand core/shell interface was confirmed by combining the results from transmission electron microscopy, small-angle X-ray scattering, nuclear magnetic resonance spectroscopy and powder X-ray diffraction. The lattice mismatch between ligand shell and nanocrystal core plays a key role in performance. In photoconducting devices the best performance (detectivity of 2 × 1011 cm Hz 1/2/W with > 110 kHz bandwidth) was obtained with (CH3NH3)3BiI6 ligands, providing the smallest relative lattice mismatch of ca. −1%. PbS nanocrystals with such ligands exhibited in millimeter sized bulk samples in the form of pressed pellets a relatively high carrier mobility for nanocrystal solids of ∼1.3 cm2/(V s), a carrier lifetime of ∼70 μs, and a low residual carrier concentration of 2.6 × 1013 cm–3. Thus, by selection of ligands with appropriate geometry and bond lengths optimized quasi-epitaxial ligand shells were formed on nanocrystals, which are beneficial for applications in optoelectronics.

Topics
  • perovskite
  • surface
  • cluster
  • phase
  • mobility
  • powder X-ray diffraction
  • transmission electron microscopy
  • defect
  • Nuclear Magnetic Resonance spectroscopy
  • X-ray scattering