People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oppenheimer, Pola Goldberg
Royal Academy of Engineering
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Conductivity optimisation of graphene oxide-M13 bacteriophage nanocomposites: towards graphene-based gas micronano-sensorscitations
- 2024Thermonanomechanics of Graphene Oxide-M13 Bacteriophage Nanocomposites -Towards Graphene-based Nanodevicescitations
- 2022Development of Unconventional Nano‐Metamaterials from Viral Nano‐Building Blockscitations
- 2020Nanomechanics of graphene oxide-bacteriophage based self-assembled porous compositescitations
- 2016Tunable nanopatterning of conductive polymers via electrohydrodynamic lithographycitations
- 2015Influence of packing density and surface roughness of vertically-aligned carbon nanotubes on adhesive properties of gecko-inspired mimetics.
- 2014Bio-inspired hierarchical polymer fiber-carbon nanotube adhesivescitations
- 2013Hierarchical orientation of crystallinity by block-copolymer patterning and alignment in an electric fieldcitations
- 2011Carbon Nanotubes Alignment via Electrohydrodynamic Patterning of Nanocompositescitations
- 2010Rapid Electrohydrodynamic Lithography Using Low-Viscosity Polymerscitations
- 2008Preparation and Characterization of a Novel Pyrrole-benzophenone Copolymerized Silica Nanocomposite as a Reagent in a Visual Immunologic-agglutination Testcitations
Places of action
Organizations | Location | People |
---|
article
Tunable nanopatterning of conductive polymers via electrohydrodynamic lithography
Abstract
An increasing number of technologies require the fabrication of conductive structures on a broad range of scales and over large areas. Here, we introduce advanced yet simple electrohydrodynamic lithography (EHL) for patterning conductive polymers directly on a substrate with high fidelity. We illustrate the generality of this robust, low-cost method by structuring thin polypyrrole films via electric-field-induced instabilities, yielding well-defined conductive structures with feature sizes ranging from tens of micrometers to hundreds of nanometers. Exploitation of a conductive polymer induces free charge suppression of the field in the polymer film, paving the way for accessing scale sizes in the low submicron range. We show the feasibility of the polypyrrole-based structures for field-effect transistor devices. Controlled EHL pattering of conductive polymer structures at the micro and nano scale demonstrated in this study combined with the possibility of effectively tuning the dimensions of the tailor-made architectures might herald a route toward various submicron device applications in supercapacitors, photovoltaics, sensors, and electronic displays.