Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nassiri Nazif, Koosha

  • Google
  • 3
  • 29
  • 210

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Toward Mass Production of Transition Metal Dichalcogenide Solar Cells: Scalable Growth of Photovoltaic-Grade Multilayer WSe2by Tungsten Selenization.7citations
  • 2021High-specific-power flexible transition metal dichalcogenide solar cells.153citations
  • 2021High-Performance p-n Junction Transition Metal Dichalcogenide Photovoltaic Cells Enabled by MoOx Doping and Passivation.50citations

Places of action

Chart of shared publication
Saraswat, Krishna C.
3 / 5 shared
Nitta, Frederick U.
1 / 2 shared
Hamtaei, Sarallah
1 / 3 shared
Brammertz, Guy
1 / 41 shared
Blackburn, Jeffrey L.
1 / 3 shared
Pop, Eric
3 / 9 shared
Daus, Alwin
2 / 5 shared
Hadermann, Joke
1 / 40 shared
Carr, Joshua M.
1 / 2 shared
Rahimisheikh, Sepideh
1 / 2 shared
Vermang, Bart
1 / 33 shared
Neilson, Kathryn M.
1 / 3 shared
Reid, Obadiah G.
1 / 5 shared
Chen, Michelle E.
1 / 2 shared
Nitta, Frederick
1 / 2 shared
Vaziri, Sam
1 / 5 shared
Islam, Raisul
2 / 2 shared
Poon, Ada S.
1 / 1 shared
Kananian, Siavash
1 / 1 shared
Park, Jin-Hong
1 / 2 shared
Kim, Kwan-Ho
1 / 1 shared
Kumar, Aravindh
2 / 3 shared
Lee, Nayeun
2 / 2 shared
Hong, Jiho
2 / 2 shared
Brongersma, Mark L.
2 / 10 shared
Mcclellan, Connor J.
1 / 3 shared
Karni, Ouri
1 / 1 shared
Van De Groep, Jorik
1 / 4 shared
Heinz, Tony F.
1 / 11 shared
Chart of publication period
2024
2021

Co-Authors (by relevance)

  • Saraswat, Krishna C.
  • Nitta, Frederick U.
  • Hamtaei, Sarallah
  • Brammertz, Guy
  • Blackburn, Jeffrey L.
  • Pop, Eric
  • Daus, Alwin
  • Hadermann, Joke
  • Carr, Joshua M.
  • Rahimisheikh, Sepideh
  • Vermang, Bart
  • Neilson, Kathryn M.
  • Reid, Obadiah G.
  • Chen, Michelle E.
  • Nitta, Frederick
  • Vaziri, Sam
  • Islam, Raisul
  • Poon, Ada S.
  • Kananian, Siavash
  • Park, Jin-Hong
  • Kim, Kwan-Ho
  • Kumar, Aravindh
  • Lee, Nayeun
  • Hong, Jiho
  • Brongersma, Mark L.
  • Mcclellan, Connor J.
  • Karni, Ouri
  • Van De Groep, Jorik
  • Heinz, Tony F.
OrganizationsLocationPeople

article

Toward Mass Production of Transition Metal Dichalcogenide Solar Cells: Scalable Growth of Photovoltaic-Grade Multilayer WSe2by Tungsten Selenization.

  • Saraswat, Krishna C.
  • Nitta, Frederick U.
  • Hamtaei, Sarallah
  • Brammertz, Guy
  • Blackburn, Jeffrey L.
  • Pop, Eric
  • Daus, Alwin
  • Hadermann, Joke
  • Carr, Joshua M.
  • Rahimisheikh, Sepideh
  • Vermang, Bart
  • Nassiri Nazif, Koosha
  • Neilson, Kathryn M.
  • Reid, Obadiah G.
Abstract

Semiconducting transition metal dichalcogenides (TMDs) are promising for high-specific-power photovoltaics due to their desirable band gaps, high absorption coefficients, and ideally dangling-bond-free surfaces. Despite their potential, the majority of TMD solar cells to date are fabricated in a nonscalable fashion, with exfoliated materials, due to the lack of high-quality, large-area, multilayer TMDs. Here, we present the scalable, thickness-tunable synthesis of multilayer WSe2 films by selenizing prepatterned tungsten with either solid-source selenium at 900 °C or H2Se precursors at 650 °C. Both methods yield photovoltaic-grade, wafer-scale WSe2 films with a layered van der Waals structure and superior characteristics, including charge carrier lifetimes up to 144 ns, over 14* higher than those of any other large-area TMD films previously demonstrated. Simulations show that such carrier lifetimes correspond to 22% power conversion efficiency and 64 W g-1 specific power in a packaged solar cell, or 3 W g-1 in a fully packaged solar module. The results of this study could facilitate the mass production of high-efficiency multilayer WSe2 solar cells at low cost.

Topics
  • surface
  • simulation
  • layered
  • tungsten
  • power conversion efficiency