People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vermang, Bart
General Electric (Finland)
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024Radiation versus environmental degradation in unencapsulated metal halide perovskite solar cellscitations
- 2024Toward Mass Production of Transition Metal Dichalcogenide Solar Cells: Scalable Growth of Photovoltaic-Grade Multilayer WSe2 by Tungsten Selenizationcitations
- 2024Rear Surface Passivation for Ink-Based, Submicron CuIn(S, Se)2 Solar Cellscitations
- 2024Liâ€Doping and Agâ€Alloying Interplay Shows the Pathway for Kesterite Solar Cells with Efficiency Over 14%citations
- 2024Toward Mass Production of Transition Metal Dichalcogenide Solar Cells: Scalable Growth of Photovoltaic-Grade Multilayer WSe2by Tungsten Selenization.citations
- 2024Li-doping and Ag-alloying interplay shows the pathway for kesterite solar cells with efficiency over 14%citations
- 2024Li-doping and Ag-alloying interplay shows the pathway for kesterite solar cells with efficiency over 14%citations
- 2023Ge-alloyed kesterite thin-film solar cells: previous investigations and current status – a comprehensive reviewcitations
- 2023Towards market commercialization: Lifecycle economic and environmental evaluation of scalable perovskite solar cellscitations
- 2023Facile Aqueous Solution-Gel route toward Thin Film CuBi2O4 Photocathodes for Solar Hydrogen Productioncitations
- 2023Ultrasonic spray coating of kesterite CZTS films from molecular inkscitations
- 2023Controlled li alloying by postsynthesis electrochemical treatment of Cu 2 ZnSn(S, Se) 4 absorbers for solar cellscitations
- 2022A study of quenching approaches to optimize ultrasonic spray coated perovskite layers scalable for PVcitations
- 2022Relevance of Ge incorporation to control the physical behaviour of point defects in kesteritecitations
- 2021Comparative study of Al2O3 and HfO2 for surface passivation of Cu(In,Ga)Se2 thin-films: An innovative Al2O3/HfO2 multi-stack designcitations
- 2021Comparative Study of Al2O3 and HfO2 for Surface Passivation of Cu(In,Ga)Se-2 Thin Films: An Innovative Al2O3/HfO2 Multistack Designcitations
- 2021A multi-stack Al2O3/HfO2 design with contact openings for front surface of Cu(In,Ga)Se-2 solar cellscitations
- 2021Revealing the electronic structure, heterojunction band offset and alignment of Cu2ZnGeSe4: a combined experimental and computational study towards photovoltaic applicationscitations
- 2020Investigating the electronic properties of Al2O3/Cu(In, Ga)Se-2 interfacecitations
- 2020Optical Lithography Patterning of SiO 2 Layers for Interface Passivation of Thin Film Solar Cellscitations
- 2020Growth of Sb2Se3 thin films by selenization of RF sputtered binary precursorscitations
- 2019A Study of the Degradation Mechanisms of Ultra Thin CIGS Solar Cells Submitted to a Damp Heat Environment
- 2019Crystallization properties of Cu2ZnGeSe4citations
- 2018Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layercitations
- 2018Optical Lithography Patterning of SiO<sub>2</sub> Layers for Interface Passivation of Thin Film Solar Cellscitations
- 2018Growth of Sb2Se3 thin films by selenization of RF sputtered binary precursors
- 2018Optical Lithography Patterning of SiO2 Layers for Interface Passivation of Thin Film Solar Cellscitations
- 2017Optimisation of rear reflectance in ultra-thin CIGS solar cells towards>20% efficiencycitations
- 2017Effect of the duration of a wet KCN etching step and post deposition annealing on the efficiency of Cu2ZnSnSe4 solar cellscitations
- 2016Progress in Cleaning and Wet Processing for Kesterite Thin Film Solar Cellscitations
- 2015Investigating the electronic properties of Al2O3/Cu(In, Ga)Se-2 interfacecitations
- 2014Potential-induced optimization of ultra-thin rear surface passivated CIGS solar cellscitations
- 2013Development of Rear Surface Passivated Cu(In,Ga)Se2 Thin Film Solar Cells with Nano-Sized Local Rear Point Contactscitations
Places of action
Organizations | Location | People |
---|
article
Toward Mass Production of Transition Metal Dichalcogenide Solar Cells: Scalable Growth of Photovoltaic-Grade Multilayer WSe2by Tungsten Selenization.
Abstract
Semiconducting transition metal dichalcogenides (TMDs) are promising for high-specific-power photovoltaics due to their desirable band gaps, high absorption coefficients, and ideally dangling-bond-free surfaces. Despite their potential, the majority of TMD solar cells to date are fabricated in a nonscalable fashion, with exfoliated materials, due to the lack of high-quality, large-area, multilayer TMDs. Here, we present the scalable, thickness-tunable synthesis of multilayer WSe2 films by selenizing prepatterned tungsten with either solid-source selenium at 900 °C or H2Se precursors at 650 °C. Both methods yield photovoltaic-grade, wafer-scale WSe2 films with a layered van der Waals structure and superior characteristics, including charge carrier lifetimes up to 144 ns, over 14* higher than those of any other large-area TMD films previously demonstrated. Simulations show that such carrier lifetimes correspond to 22% power conversion efficiency and 64 W g-1 specific power in a packaged solar cell, or 3 W g-1 in a fully packaged solar module. The results of this study could facilitate the mass production of high-efficiency multilayer WSe2 solar cells at low cost.