Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kummel, Andrew

  • Google
  • 1
  • 9
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Band-to-Band Tunneling Leakage Current Characterization and Projection in Carbon Nanotube Transistors.12citations

Places of action

Chart of shared publication
Mitra, Subhasish
1 / 1 shared
Pitner, Greg
1 / 1 shared
Chen, Edward
1 / 1 shared
Zhang, Zichen
1 / 1 shared
Bandaru, Prabhakar
1 / 1 shared
Wong, H-S Philip
1 / 3 shared
Su, Sheng-Kai K.
1 / 1 shared
Radu, Iuliana
1 / 4 shared
Lin, Qing
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Mitra, Subhasish
  • Pitner, Greg
  • Chen, Edward
  • Zhang, Zichen
  • Bandaru, Prabhakar
  • Wong, H-S Philip
  • Su, Sheng-Kai K.
  • Radu, Iuliana
  • Lin, Qing
OrganizationsLocationPeople

article

Band-to-Band Tunneling Leakage Current Characterization and Projection in Carbon Nanotube Transistors.

  • Mitra, Subhasish
  • Pitner, Greg
  • Chen, Edward
  • Zhang, Zichen
  • Kummel, Andrew
  • Bandaru, Prabhakar
  • Wong, H-S Philip
  • Su, Sheng-Kai K.
  • Radu, Iuliana
  • Lin, Qing
Abstract

Carbon nanotube (CNT) transistors demonstrate high mobility but also experience off-state leakage due to the small effective mass and band gap. The lower limit of off-current (IMIN) was measured in electrostatically doped CNT metal-oxide-semiconductor field-effect transistors (MOSFETs) across a range of band gaps (0.37 to 1.19 eV), supply voltages (0.5 to 0.7 V), and extension doping levels (0.2 to 0.8 carriers/nm). A nonequilibrium Green's function (NEGF) model confirms the dependence of IMIN on CNT band gap, supply voltage, and extension doping level. A leakage current design space across CNT band gap, supply voltage, and extension doping is projected based on the validated NEGF model for long-channel CNT MOSFETs to identify the appropriate device design choices. The optimal extension doping and CNT band gap design choice for a target off-current density are identified by including on-current projection in the leakage current design space. An extension doping level >0.5 carrier/nm is required for optimized on-current.

Topics
  • density
  • impedance spectroscopy
  • Carbon
  • mobility
  • nanotube
  • semiconductor
  • current density