Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lampadaris, Charalampos

  • Google
  • 2
  • 14
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Epitaxially Driven Phase Selectivity of Sn in Hybrid Quantum Nanowires15citations
  • 2023Epitaxially Driven Phase Selectivity of Sn in Hybrid Quantum Nanowires15citations

Places of action

Chart of shared publication
Arbiol, Jordi
1 / 57 shared
Carrad, Damon James
2 / 5 shared
Jespersen, Thomas Sand
1 / 11 shared
Khan, Sabbir A.
2 / 7 shared
Spadaro, Maria Chiara
2 / 24 shared
Liu, Yu
2 / 41 shared
Olsteins, Dags
2 / 2 shared
Martí-Sánchez, Sara
1 / 7 shared
Quiñones, Judith
1 / 1 shared
Krogstrup, Peter
2 / 17 shared
Martã-Sãnchez, Sara
1 / 11 shared
Jordi, Arbiol I. Cobos
1 / 43 shared
Quiãones, Judith
1 / 1 shared
Sand Jespersen, Thomas
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Arbiol, Jordi
  • Carrad, Damon James
  • Jespersen, Thomas Sand
  • Khan, Sabbir A.
  • Spadaro, Maria Chiara
  • Liu, Yu
  • Olsteins, Dags
  • Martí-Sánchez, Sara
  • Quiñones, Judith
  • Krogstrup, Peter
  • Martã-Sãnchez, Sara
  • Jordi, Arbiol I. Cobos
  • Quiãones, Judith
  • Sand Jespersen, Thomas
OrganizationsLocationPeople

article

Epitaxially Driven Phase Selectivity of Sn in Hybrid Quantum Nanowires

  • Arbiol, Jordi
  • Carrad, Damon James
  • Jespersen, Thomas Sand
  • Khan, Sabbir A.
  • Spadaro, Maria Chiara
  • Liu, Yu
  • Olsteins, Dags
  • Martí-Sánchez, Sara
  • Quiñones, Judith
  • Krogstrup, Peter
  • Lampadaris, Charalampos
Abstract

Hybrid semiconductor-superconductor nanowires constitute a pervasive platform for studying gate-tunable superconductivity and the emergence of topological behavior. Their low dimensionality and crystal structure flexibility facilitate unique heterostructure growth and efficient material optimization, crucial prerequisites for accurately constructing complex multicomponent quantum materials. Here, we present an extensive study of Sn growth on InSb, InAsSb, and InAs nanowires and demonstrate how the crystal structure of the nanowires drives the formation of either semimetallic α -Sn or superconducting β -Sn. For InAs nanowires, we observe phase-pure superconducting β -Sn shells. However, for InSb and InAsSb nanowires, an initial epitaxial α -Sn phase evolves into a polycrystalline shell of coexisting α and β phases, where the β / α volume ratio increases with Sn shell thickness. Whether these nanowires exhibit superconductivity or not critically relies on the β -Sn content. Therefore, this work provides key insights into Sn phases on a variety of semiconductors with consequences for the yield of superconducting hybrids suitable for generating topological systems.

Topics
  • phase
  • semiconductor
  • superconductivity
  • superconductivity