Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Van Den Bosch, Iris

  • Google
  • 2
  • 23
  • 98

University of Twente

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024In Situ X-ray Absorption Spectroscopy of LaFeO3 and LaFeO3/LaNiO3 Thin Films in the Electrocatalytic Oxygen Evolution Reaction5citations
  • 2023A High-Entropy Oxide as High-Activity Electrocatalyst for Water Oxidation93citations

Places of action

Chart of shared publication
Lazemi, Masoud
1 / 6 shared
Peerlings, Matt L. J.
1 / 2 shared
Nunnenkamp, Moritz
1 / 2 shared
Koster, Gertjan
2 / 31 shared
Jongh, Petra De
1 / 2 shared
Nachtegaal, Maarten
1 / 21 shared
Groot, Frank M. F. De
1 / 3 shared
Le, Phu T. P.
1 / 3 shared
Che, Qijun
1 / 2 shared
Safonova, Olga V.
1 / 7 shared
Bäumer, Christoph
2 / 30 shared
Kante, Mohana V.
1 / 3 shared
Falling, Lorenz J.
1 / 4 shared
Tsvetanova, Martina
1 / 2 shared
Gauquelin, Nicolas
1 / 43 shared
Nemšák, Slavomír
1 / 7 shared
Ni, Shu
1 / 6 shared
Weber, Moritz L.
1 / 9 shared
Estrada, Leonardo Velasco
1 / 1 shared
Gunkel, Felix
1 / 24 shared
Hahn, Horst
1 / 52 shared
Cunha, Daniel
1 / 6 shared
Heymann, Lisa
1 / 8 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Lazemi, Masoud
  • Peerlings, Matt L. J.
  • Nunnenkamp, Moritz
  • Koster, Gertjan
  • Jongh, Petra De
  • Nachtegaal, Maarten
  • Groot, Frank M. F. De
  • Le, Phu T. P.
  • Che, Qijun
  • Safonova, Olga V.
  • Bäumer, Christoph
  • Kante, Mohana V.
  • Falling, Lorenz J.
  • Tsvetanova, Martina
  • Gauquelin, Nicolas
  • Nemšák, Slavomír
  • Ni, Shu
  • Weber, Moritz L.
  • Estrada, Leonardo Velasco
  • Gunkel, Felix
  • Hahn, Horst
  • Cunha, Daniel
  • Heymann, Lisa
OrganizationsLocationPeople

article

A High-Entropy Oxide as High-Activity Electrocatalyst for Water Oxidation

  • Kante, Mohana V.
  • Koster, Gertjan
  • Falling, Lorenz J.
  • Tsvetanova, Martina
  • Gauquelin, Nicolas
  • Nemšák, Slavomír
  • Bäumer, Christoph
  • Van Den Bosch, Iris
  • Ni, Shu
  • Weber, Moritz L.
  • Estrada, Leonardo Velasco
  • Gunkel, Felix
  • Hahn, Horst
  • Cunha, Daniel
  • Heymann, Lisa
Abstract

<p>High-entropy materials are an emerging pathway in the development of high-activity (electro)catalysts because of the inherent tunability and coexistence of multiple potential active sites, which may lead to earth-abundant catalyst materials for energy-efficient electrochemical energy storage. In this report, we identify how the multication composition in high-entropy perovskite oxides (HEO) contributes to high catalytic activity for the oxygen evolution reaction (OER), i.e., the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation. We compare the activity of the (001) facet of LaCr<sub>0.2</sub>Mn<sub>0.2</sub>Fe<sub>0.2</sub>Co<sub>0.2</sub>Ni<sub>0.2</sub>O<sub>3-δ</sub> with the parent compounds (single B-site in the ABO<sub>3</sub> perovskite). While the single B-site perovskites roughly follow the expected volcano-type activity trends, the HEO clearly outperforms all of its parent compounds with 17 to 680 times higher currents at a fixed overpotential. As all samples were grown as an epitaxial layer, our results indicate an intrinsic composition-function relationship, avoiding the effects of complex geometries or unknown surface composition. In-depth X-ray photoemission studies reveal a synergistic effect of simultaneous oxidation and reduction of different transition metal cations during the adsorption of reaction intermediates. The surprisingly high OER activity demonstrates that HEOs are a highly attractive, earth-abundant material class for high-activity OER electrocatalysts, possibly allowing the activity to be fine-tuned beyond the scaling limits of mono- or bimetallic oxides.</p>

Topics
  • perovskite
  • surface
  • compound
  • Oxygen
  • Hydrogen