People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yu, Donghong
Aalborg University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023The Effect of Physical Aging on the Viscoelastoplastic Response of Glycol Modified Poly(ethylene terephthalate)citations
- 2023Accelerated physical aging of four PET copolyesterscitations
- 2023Accelerated physical aging of four PET copolyesters:Enthalpy relaxation and yield behaviourcitations
- 2022Resolving the Conflict between Strength and Toughness in Bioactive Silica–Polymer Hybrid Materialscitations
- 2019Multiscale Characterization of a Wood-Based Biocrude as a Green Compatibilizing Agent for High-Impact Polystyrene/Halloysite Nanotube Nanocompositescitations
- 2013Synthesis and photovoltaic properties from inverted geometry cells and roll-to-roll coated large area cells from dithienopyrrole-based donor–acceptor polymerscitations
- 2013Synthesis and photovoltaic properties from inverted geometry cells and roll-to-roll coated large area cells from dithienopyrrole-based donor–acceptor polymerscitations
Places of action
Organizations | Location | People |
---|
article
Resolving the Conflict between Strength and Toughness in Bioactive Silica–Polymer Hybrid Materials
Abstract
Simultaneously improving the strength and toughness of materials is a major challenge. Inorganic-polymer hybrids offer the potential to combine mechanical properties of a stiff inorganic glass with a flexible organic polymer. However, the toughening mechanism at the atomic scale remains largely unknown. Based on combined experimental and molecular dynamics simulation results, we find that the deformation and fracture behavior of hybrids are governed by noncovalent intermolecular interactions between polymer and silica networks rather than the breakage of covalent bonds. We then attempt three methods to improve the balance between strength and toughness of hybrids, namely the total inorganic/organic (I/O) weight ratio, the size of silica nanoparticles, and the ratio of -C-O vs -C-C bonds in the polymer chains. Specifically, for a hybrid with matched silica size and I/O ratio, we demonstrate optimized mechanical properties in terms of strength (1.75 MPa at breakage), degree of elongation at the fracture point (31%), toughness (219 kPa), hardness (1.08 MPa), as well as Young's modulus (3.0 MPa). We also demonstrate that this hybrid material shows excellent biocompatibility and ability to support cell attachment as well as proliferation. This supports the possible application of this material as a strong yet tough bone scaffold material.