People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Domènech, Berta
Osram Opto Semiconductors
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Nanoindentation creep of supercrystalline nanocompositescitations
- 2022Nanoindentation creep of supercrystalline nanocomposites
- 2022Nanoindentation of Supercrystalline Nanocomposites:Linear Relationship Between Elastic Modulus and Hardnesscitations
- 2022Strengthening Engineered Nanocrystal Three-Dimensional Superlattices via Ligand Conformation and Reactivitycitations
- 2022Bridging Nanocrystals to Robust, Multifunctional, Bulk Materials through Nature-Inspired, Hierarchical Designcitations
- 2022Nanoindentation of Supercrystalline Nanocompositescitations
- 2021Constitutive and fracture behavior of ultra-strong supercrystalline nanocompositescitations
- 2021Deformation Behavior of Cross-Linked Supercrystalline Nanocomposites: An in Situ SAXS/WAXS Study during Uniaxial Compressioncitations
- 2021Deformation Behavior of Cross-Linked Supercrystalline Nanocompositescitations
- 2020Strong Macroscale Supercrystalline Structures by 3D Printing Combined with Self‐Assembly of Ceramic Functionalized Nanoparticlescitations
- 2019Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticlescitations
- 2019Iron oxide-based nanostructured ceramics with tailored magnetic and mechanical properties: development of mechanically robust, bulk superparamagnetic materialscitations
- 2019Modulating the Mechanical Properties of Supercrystalline Nanocomposite Materials via Solvent–Ligand Interactionscitations
- 2016Polyurethane foams doped with stable silver nanoparticles as bactericidal and catalytic materials for the effective treatment of watercitations
- 2014Polymer-Metal Nanocomposites Containing Dual-Function Metal Nanoparticles: Ion-Exchange Materials Modified with Catalytically-Active and Bactericide Silver Nanoparticlescitations
Places of action
Organizations | Location | People |
---|
article
Strengthening Engineered Nanocrystal Three-Dimensional Superlattices via Ligand Conformation and Reactivity
Abstract
Nanocrystal assembly into ordered structures provides mesostructural functional materials with a precise control that starts at the atomic scale. However, the lack of understanding on the self-assembly itself plus the poor structural integrity of the resulting supercrystalline materials still limits their application into engineered materials and devices. Surface functionalization of the nanobuilding blocks with organic ligands can be used not only as a means to control the interparticle interactions during self-assembly but also as a reactive platform to further strengthen the final material via ligand cross-linking. Here, we explore the influence of the ligands on superlattice formation and during cross-linking via thermal annealing. We elucidate the effect of the surface functionalization on the nanostructure during self-assembly and show how the ligand-promoted superlattice changes subsequently alter the cross-linking behavior. By gaining further insights on the chemical species derived from the thermally activated cross-linking and its effect in the overall mechanical response, we identify an oxidative radical polymerization as the main mechanism responsible for the ligand cross-linking. In the cascade of reactions occurring during the surface-ligands polymerization, the nanocrystal core material plays a catalytic role, being strongly affected by the anchoring group of the surface ligands. Ultimately, we demonstrate how the found mechanistic insights can be used to adjust the mechanical and nanostructural properties of the obtained nanocomposites. These results enable engineering supercrystalline nanocomposites with improved cohesion while preserving their characteristic nanostructure, which is required to achieve the collective properties for broad functional applications.