People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vossmeyer, Tobias
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Supraparticles from Cubic Iron Oxide Nanoparticles: Synthesis, Polymer Encapsulation, Functionalization, and Magnetic Properties
- 2022Strengthening Engineered Nanocrystal Three-Dimensional Superlattices via Ligand Conformation and Reactivitycitations
- 2021Constitutive and fracture behavior of ultra-strong supercrystalline nanocompositescitations
- 2020Shape-controlling effects of hydrohalic and carboxylic acids in TiO2 nanoparticle synthesiscitations
- 2020Mapping the Mechanical Properties of Hierarchical Supercrystalline Ceramic-Organic Nanocompositescitations
- 2019Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticlescitations
- 2019Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticles
- 2019Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticlescitations
- 2019Alumina-doped zirconia submicro-particles : synthesis, thermal stability, and microstructural characterizationcitations
- 2019Synthesis and thermal stability of ZrO2@SiO2 core-shell submicron particlescitations
- 2019Tuning the Elasticity of Cross-Linked Gold Nanoparticle Assembliescitations
- 2019Elasticity of cross-linked titania nanocrystal assemblies probed by AFM-bulge testscitations
- 2019Alumina-Doped Zirconia Submicro-Particles: Synthesis, Thermal Stability, and Microstructural Characterizationcitations
- 2019Modulating the Mechanical Properties of Supercrystalline Nanocomposite Materials via Solvent–Ligand Interactionscitations
- 2016High-temperature stable Zirconia particles doped with Yttrium, Lanthanum, and Gadoliniumcitations
- 2015Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres
- 2015Yttria-stabilized zirconia microspheres: Novel building blocks for high-temperature photonics
Places of action
Organizations | Location | People |
---|
article
Strengthening Engineered Nanocrystal Three-Dimensional Superlattices via Ligand Conformation and Reactivity
Abstract
Nanocrystal assembly into ordered structures provides mesostructural functional materials with a precise control that starts at the atomic scale. However, the lack of understanding on the self-assembly itself plus the poor structural integrity of the resulting supercrystalline materials still limits their application into engineered materials and devices. Surface functionalization of the nanobuilding blocks with organic ligands can be used not only as a means to control the interparticle interactions during self-assembly but also as a reactive platform to further strengthen the final material via ligand cross-linking. Here, we explore the influence of the ligands on superlattice formation and during cross-linking via thermal annealing. We elucidate the effect of the surface functionalization on the nanostructure during self-assembly and show how the ligand-promoted superlattice changes subsequently alter the cross-linking behavior. By gaining further insights on the chemical species derived from the thermally activated cross-linking and its effect in the overall mechanical response, we identify an oxidative radical polymerization as the main mechanism responsible for the ligand cross-linking. In the cascade of reactions occurring during the surface-ligands polymerization, the nanocrystal core material plays a catalytic role, being strongly affected by the anchoring group of the surface ligands. Ultimately, we demonstrate how the found mechanistic insights can be used to adjust the mechanical and nanostructural properties of the obtained nanocomposites. These results enable engineering supercrystalline nanocomposites with improved cohesion while preserving their characteristic nanostructure, which is required to achieve the collective properties for broad functional applications.