People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schaub, Renald
University of St Andrews
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022Surface confined hydrogenation of graphene nanoribbonscitations
- 2019Calculating the frequencies and intensities of strongly anharmonic modes of adsorbates on surfacescitations
- 2014Coupling Epitaxy, Chemical Bonding, and Work Function at the Local Scale in Transition Metal-Supported Graphenecitations
- 2014Weak mismatch epitaxy and structural feedback in graphene growth on copper foilcitations
- 2013Weak mismatch epitaxy and structural feedback in graphene growth on copper foilcitations
- 2012Validating molecular dynamics with direct imaging of radiation damage debriscitations
- 2011Electrodeposition of Palladium onto a Pyridine-Terminated Self-Assembled Monolayercitations
- 2010Coupling Epitaxy, Chemical Bonding, and Work Function at the Local Scale in Transition Metal-Supported Graphenecitations
- 2010Strong Electron Correlations in the Normal State of the Iron-Based FeSe 0.42 Te 0.58 Superconductor Observed by Angle-Resolved Photoemission Spectroscopycitations
Places of action
Organizations | Location | People |
---|
article
Surface confined hydrogenation of graphene nanoribbons
Abstract
YYS acknowledges support from the Funds for Women Graduates (GA-00558). FG and CJB acknowledge support from EPSRC through Grants EP/M029077/1 and EP/S027270/1. RS acknowledges financial support from the Scottish Funding Council through SRD-Grant HR07003. ; On-surface synthesis with designer precursor molecules is considered an effective method for preparing graphene nanoribbons (GNRs) of well-defined widths and with tunable electronic properties. Recent reports have shown that the band gap of ribbons doped with heteroatoms (such as boron, nitrogen, and sulfur) remains unchanged in magnitude in most cases. Nevertheless, theory predicts that a tunable band gap may be engineered by hydrogenation, but experimental evidence for this is so far lacking. Herein, surface-confined hydrogenation studies of 7-armchair graphene nanoribbons (7-AGNRs) grown on Au(111) surfaces, in an ultrahigh vacuum environment, are reported. GNRs are first prepared, then hydrogenated by exposure to activated hydrogen atoms. High resolution electron energy loss spectroscopy (HREELS) and scanning tunneling microscopy (STM) images reveal a self-limited hydrogenation process. By means of a combination of bond-resolved scanning tunneling microscopy (BRSTM) imaging and tip-induced site-specific dehydrogenation, the hydrogenation mechanism is studied in detail, and density-functional theory (DFT) calculation methods are used to complement the experimental findings. In all cases, the results demonstrate the successful modification of the electronic properties of the GNR/Au(111) system by edge and basal-plane hydrogenation, and a mechanism for the hydrogenation process is proposed. ; Peer reviewed