Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Po, Hong

  • Google
  • 1
  • 7
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Chiral Helices Formation by Self-Assembled Molecules on Semiconductor Flexible Substrates21citations

Places of action

Chart of shared publication
Bico, Jose
1 / 1 shared
Baptiste, Benoit
1 / 5 shared
Reyssat, Etienne
1 / 2 shared
Benoit, Roman
1 / 1 shared
Ithurria, Sandrine
1 / 10 shared
Lhuillier, Emmanuel
1 / 26 shared
Dabard, Corentin
1 / 3 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Bico, Jose
  • Baptiste, Benoit
  • Reyssat, Etienne
  • Benoit, Roman
  • Ithurria, Sandrine
  • Lhuillier, Emmanuel
  • Dabard, Corentin
OrganizationsLocationPeople

article

Chiral Helices Formation by Self-Assembled Molecules on Semiconductor Flexible Substrates

  • Bico, Jose
  • Baptiste, Benoit
  • Reyssat, Etienne
  • Benoit, Roman
  • Po, Hong
  • Ithurria, Sandrine
  • Lhuillier, Emmanuel
  • Dabard, Corentin
Abstract

The crystal structure of atomically defined colloidal II-VI semiconductor nanoplatelets (NPLs) induces the self-assembly of organic ligands over thousands of nm 2 on the top and bottom basal planes of these anisotropic nanoparticles. NPLs curl into helices under the influence of the surface stress induced by these ligands. We demonstrate the control of the radii of NPLs helices through the ligands described as an anchoring group and an aliphatic chain of a given length. A mechanical model accounting for the misfit strain between the inorganic core and the surface ligands predicts the helices radii. We show how the chirality of the helices can be tuned by the ligands anchoring group and inverted from one population to another.

Topics
  • nanoparticle
  • surface
  • anisotropic
  • self-assembly
  • II-VI semiconductor