People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zbořil, Radek
Technical University of Ostrava
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Unveiling the potential of covalent organic frameworks for energy storage: Developments, challenges, and future prospectscitations
- 2023TiO2 nanotube arrays decorated with Ir nanoparticles for enhanced hydrogen evolution electrocatalysis
- 2022Intermetallic Copper‐Based Electride Catalyst with High Activity for C–H Oxidation and Cycloaddition of CO<sub>2</sub> into Epoxidescitations
- 2022Band gap and Morphology Engineering of Hematite Nanoflakes from an Ex Situ Sn Doping for Enhanced Photoelectrochemical Water Splittingcitations
- 2022Graphene-Based Metal-Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologiescitations
- 2021Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammoniacitations
- 2021Covalent Graphene-MOF Hybrids for High-Performance Asymmetric Supercapacitorscitations
- 2021Emerging MXene@Metal-Organic Framework Hybridscitations
- 2020Controlling phase fraction and crystal orientation via thermal oxidation of iron foils for enhanced photoelectrochemical performancecitations
- 2020Metal Halide Perovskite@Metal-Organic Framework Hybridscitations
- 2020High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO2 nanotube arrays as interactive supports for Ir nanoparticlescitations
- 2019Crystal Structure‐ and Morphology‐Driven Electrochemistry of Iron Oxide Nanoparticles in Hydrogen Peroxide Detectioncitations
- 2019Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Productioncitations
- 2016Advanced Sensing of Antibiotics with Magnetic Gold Nanocomposite: Electrochemical Detection of Chloramphenicolcitations
- 2015Direct evidence of Fe(v) and Fe(iv) intermediates during reduction of Fe(vi) to Fe(iii): a nuclear forward scattering of synchrotron radiation approachcitations
- 2013Thermal decomposition of [Co(en)3][Fe(CN)6]∙ 2H2O: Topotactic dehydration process, valence and spin exchange mechanism elucidation
- 2006Phase composition of steel–enamel interfaces: Effects of chemical pre-treatmentcitations
Places of action
Organizations | Location | People |
---|
article
Emerging MXene@Metal-Organic Framework Hybrids
Abstract
<p>Rapid progress on developing smart materials and design of hybrids is motivated by pressing challenges associated with energy crisis and environmental remediation. While emergence of versatile classes of nanomaterials has been fascinating, the real excitement lies in the design of hybrid materials with tunable properties. Metal-organic frameworks (MOFs) are the key materials for gas sorption and electrochemical applications, but their sustainability is challenged by limited chemical stability, poor electrical conductivity, and intricate, inaccessible pores. Despite tremendous efforts towards improving the stability of MOF materials, little progress has made researchers inclined toward developing hybrid materials. MXenes, a family of two-dimensional transition-metal carbides, nitrides and carbonitrides, are known for their compositional versatility and formation of a range of structures with rich surface chemistry. Hybridization of MOFs with functional layered MXene materials may be beneficial if the host structure provides appropriate interactions for stabilizing and improving the desired properties. Recent efforts have focused on integrating Ti3C2Tx and V2CTx MXenes with MOFs to result in hybrid materials with augmented electrochemical and physicochemical properties, widening the scope for emerging applications. This review discusses the potential design strategies of MXene@MOF hybrids, attributes of tunable properties in the resulting hybrids, and their applications in water treatment, sensing, electrochemical energy storage, smart textiles, and electrocatalysis. Comprehensive discussions on the recent efforts on rapidly evolving MXene@MOF materials for various applications and potential future directions are highlighted.</p>