People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mcclellan, Connor J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2021High-Performance p-n Junction Transition Metal Dichalcogenide Photovoltaic Cells Enabled by MoOx Doping and Passivation.citations
- 2021High Current Density in Monolayer MoS2 Doped by AlOx.citations
- 2014oxidized titanium as a gate dielectric for graphene field effect transistors and its tunneling mechanismscitations
Places of action
Organizations | Location | People |
---|
article
High Current Density in Monolayer MoS2 Doped by AlOx.
Abstract
Semiconductors require stable doping for applications in transistors, optoelectronics, and thermoelectrics. However, this has been challenging for two-dimensional (2D) materials, where existing approaches are either incompatible with conventional semiconductor processing or introduce time-dependent, hysteretic behavior. Here we show that low-temperature (<200 °C) substoichiometric AlOx provides a stable n-doping layer for monolayer MoS2, compatible with circuit integration. This approach achieves carrier densities >2 * 1013 cm-2, sheet resistance as low as 7 kOmega/□, and good contact resistance 480 Omega·mum in transistors from monolayer MoS2 grown by chemical vapor deposition. We also reach record current density of nearly 700 muA/mum (>110 MA/cm2) along this three-atom-thick semiconductor while preserving transistor on/off current ratio >106. The maximum current is ultimately limited by self-heating (SH) and could exceed 1 mA/mum with better device heat sinking. With their 0.1 nA/mum off-current, such doped MoS2 devices approach several low-power transistor metrics required by the international technology roadmap.