People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oksenberg, Eitan
Institute for Atomic and Molecular Physics
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2022Sub-nanometer mapping of strain-induced band structure variations in planar nanowire core-shell heterostructures
- 2022Sub-nanometer mapping of strain-induced band structure variations in planar nanowire core-shell heterostructurescitations
- 2022Sub-nanometer mapping of strain-induced band structure variations in planar nanowire core-shell heterostructurescitations
- 2021Deconvoluting Energy Transport Mechanisms in Metal Halide Perovskites Using CsPbBr3 Nanowires as a Model Systemcitations
- 2021Deconvoluting Energy Transport Mechanisms in Metal Halide Perovskites Using CsPbBr3 Nanowires as a Model Systemcitations
- 2021Inducing ferroelastic domains in single-crystal CsPbBr3 perovskite nanowires using atomic force microscopycitations
- 2021Inducing ferroelastic domains in single-crystal CsPbBr3 perovskite nanowires using atomic force microscopycitations
- 2020In Situ Imaging of Ferroelastic Domain Dynamics in CsPbBr3Perovskite Nanowires by Nanofocused Scanning X-ray Diffractioncitations
- 2020Large lattice distortions and size-dependent bandgap modulation in epitaxial halide perovskite nanowirescitations
- 2020Large lattice distortions and size-dependent bandgap modulation in epitaxial halide perovskite nanowirescitations
- 2020In situ imaging of ferroelastic domain dynamics in CsPbBr3perovskite nanowires by nanofocused scanning X-ray diffractioncitations
- 2017Surface-Guided Core-Shell ZnSe@ZnTe Nanowires as Radial p-n Heterojunctions with Photovoltaic Behaviorcitations
- 2017Surface-Guided Core-Shell ZnSe@ZnTe Nanowires as Radial p-n Heterojunctions with Photovoltaic Behaviorcitations
- 2017Guided CdSe Nanowires Parallelly Integrated into Fast Visible-Range Photodetectorscitations
- 2016Guided growth of horizontal p-type ZnTe nanowirescitations
Places of action
Organizations | Location | People |
---|
article
In situ imaging of ferroelastic domain dynamics in CsPbBr3perovskite nanowires by nanofocused scanning X-ray diffraction
Abstract
<p>The interest in metal halide perovskites has grown as impressive results have been shown in solar cells, light emitting devices, and scintillators, but this class of materials have a complex crystal structure that is only partially understood. In particular, the dynamics of the nanoscale ferroelastic domains in metal halide perovskites remains difficult to study. An ideal in situ imaging method for ferroelastic domains requires a challenging combination of high spatial resolution and long penetration depth. Here, we demonstrate in situ temperature-dependent imaging of ferroelastic domains in a single nanowire of metal halide perovskite, CsPbBr3. Scanning X-ray diffraction with a 60 nm beam was used to retrieve local structural properties for temperatures up to 140 °C. We observed a single Bragg peak at room temperature, but at 80 °C, four new Bragg peaks appeared, originating in different real-space domains. The domains were arranged in periodic stripes in the center and with a hatched pattern close to the edges. Reciprocal space mapping at 80 °C was used to quantify the local strain and lattice tilts, revealing the ferroelastic nature of the domains. The domains display a partial stability to further temperature changes. Our results show the dynamics of nanoscale ferroelastic domain formation within a single-crystal perovskite nanostructure, which is important both for the fundamental understanding of these materials and for the development of perovskite-based devices.</p>