Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Burton, Oliver J.

  • Google
  • 9
  • 56
  • 41

University of Cambridge

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2022The Effects of Surfaces and Surface Passivation on the Electrical Properties of Nanowires and Other Nanostructurescitations
  • 2022Defect seeded remote epitaxy of GaAs films on graphene.citations
  • 2020High-Throughput Electrical Characterization of Nanomaterials from Room to Cryogenic Temperatures.citations
  • 2020High-Throughput Electrical Characterization of Nanomaterials from Room to Cryogenic Temperatures.citations
  • 2020Integrated Wafer Scale Growth of Single Crystal Metal Films and High Quality Graphene.citations
  • 2020High-throughput electrical characterization of nanomaterials from room to cryogenic temperatures9citations
  • 2020Understanding metal organic chemical vapour deposition of monolayer WS2: the enhancing role of Au substrate for simple organosulfur precursors.citations
  • 2020Integrated wafer scale growth of single crystal metal films and high quality graphene32citations
  • 2020Understanding metal organic chemical vapour deposition of monolayer WS<sub>2</sub>: the enhancing role of Au substrate for simple organosulfur precursors.citations

Places of action

Chart of shared publication
Johnston, Michael B.
1 / 47 shared
Lake, Jamie D.
1 / 2 shared
Kar, Srabani
1 / 3 shared
Joyce, Hannah J.
3 / 19 shared
Zhang, Yunyan
1 / 5 shared
Adeyemo, Stephanie O.
1 / 3 shared
Alexander-Webber, Jack A.
4 / 10 shared
Liu, Huiyun
1 / 7 shared
Hirst, Louise Caroline
1 / 1 shared
Al-Hada, Mohamed
1 / 3 shared
Goff, Lucy E.
1 / 2 shared
Hofmann, Stephan
8 / 46 shared
Zulqurnain, Muhammad
1 / 2 shared
Fung, Shin-Jr
2 / 2 shared
Robertson, Joshua
3 / 5 shared
Hsieh, Yu-Chiang
2 / 2 shared
Fan, Ye
5 / 11 shared
Strain, Michael
1 / 10 shared
Beere, Harvey E.
3 / 5 shared
Guilhabert, Benoit Je
2 / 2 shared
Kelly, Michael
3 / 3 shared
Smith, Charles G.
3 / 4 shared
Jagadish, Chennupati
2 / 11 shared
Joyce, Hannah
1 / 2 shared
Batey, Jack O.
3 / 3 shared
Alexander-Webber, Jack
1 / 3 shared
Hurtado, Antonio
3 / 11 shared
Dawson, Martin D.
3 / 3 shared
Griffiths, Jonathan P.
3 / 3 shared
Chen, Tse-Ming
2 / 4 shared
Ritchie, David A.
3 / 7 shared
Jevtics, Dimitars
3 / 4 shared
Strain, Michael J.
2 / 2 shared
Smith, Luke W.
2 / 2 shared
Veigang-Radulescu, Vlad-Petru
2 / 3 shared
Pollard, Andrew J.
4 / 9 shared
Massabuau, Fabien C-P
1 / 2 shared
Brennan, Barry
3 / 6 shared
Chen, Tse Ming
1 / 3 shared
Guilhabert, Benoit J. E.
1 / 1 shared
Fung, S.
1 / 1 shared
Hsieh, Yu Chiang
1 / 1 shared
Nakanishi, Kenichi
2 / 5 shared
Held, Georg
2 / 11 shared
Stewart, J. Callum
2 / 2 shared
Weatherup, Robert S.
1 / 7 shared
Ferrer, Pilar
2 / 9 shared
Veigang-Radulescu, Vlad P.
2 / 2 shared
Swallow, Jack En
2 / 3 shared
Dearle, Alice E.
1 / 1 shared
Mizuta, Ryo
2 / 6 shared
Brennen, Barry
1 / 1 shared
Massabuau, Fcp
1 / 19 shared
Alexander-Webber, Jack Allen
1 / 2 shared
Weatherup, Rs
1 / 28 shared
Dearle, Alice
1 / 1 shared
Chart of publication period
2022
2020

Co-Authors (by relevance)

  • Johnston, Michael B.
  • Lake, Jamie D.
  • Kar, Srabani
  • Joyce, Hannah J.
  • Zhang, Yunyan
  • Adeyemo, Stephanie O.
  • Alexander-Webber, Jack A.
  • Liu, Huiyun
  • Hirst, Louise Caroline
  • Al-Hada, Mohamed
  • Goff, Lucy E.
  • Hofmann, Stephan
  • Zulqurnain, Muhammad
  • Fung, Shin-Jr
  • Robertson, Joshua
  • Hsieh, Yu-Chiang
  • Fan, Ye
  • Strain, Michael
  • Beere, Harvey E.
  • Guilhabert, Benoit Je
  • Kelly, Michael
  • Smith, Charles G.
  • Jagadish, Chennupati
  • Joyce, Hannah
  • Batey, Jack O.
  • Alexander-Webber, Jack
  • Hurtado, Antonio
  • Dawson, Martin D.
  • Griffiths, Jonathan P.
  • Chen, Tse-Ming
  • Ritchie, David A.
  • Jevtics, Dimitars
  • Strain, Michael J.
  • Smith, Luke W.
  • Veigang-Radulescu, Vlad-Petru
  • Pollard, Andrew J.
  • Massabuau, Fabien C-P
  • Brennan, Barry
  • Chen, Tse Ming
  • Guilhabert, Benoit J. E.
  • Fung, S.
  • Hsieh, Yu Chiang
  • Nakanishi, Kenichi
  • Held, Georg
  • Stewart, J. Callum
  • Weatherup, Robert S.
  • Ferrer, Pilar
  • Veigang-Radulescu, Vlad P.
  • Swallow, Jack En
  • Dearle, Alice E.
  • Mizuta, Ryo
  • Brennen, Barry
  • Massabuau, Fcp
  • Alexander-Webber, Jack Allen
  • Weatherup, Rs
  • Dearle, Alice
OrganizationsLocationPeople

article

High-throughput electrical characterization of nanomaterials from room to cryogenic temperatures

  • Robertson, Joshua
  • Fan, Ye
  • Beere, Harvey E.
  • Kelly, Michael
  • Strain, Michael J.
  • Smith, Charles G.
  • Smith, Luke W.
  • Chen, Tse Ming
  • Batey, Jack O.
  • Hurtado, Antonio
  • Burton, Oliver J.
  • Joyce, Hannah J.
  • Guilhabert, Benoit J. E.
  • Dawson, Martin D.
  • Hofmann, Stephan
  • Fung, S.
  • Griffiths, Jonathan P.
  • Hsieh, Yu Chiang
  • Alexander-Webber, Jack A.
  • Ritchie, David A.
  • Jevtics, Dimitars
Abstract

<p>We present multiplexer methodology and hardware for nanoelectronic device characterization. This high-throughput and scalable approach to testing large arrays of nanodevices operates from room temperature to milli-Kelvin temperatures and is universally compatible with different materials and integration techniques. We demonstrate the applicability of our approach on two archetypal nanomaterials-graphene and semiconductor nanowires-integrated with a GaAs-based multiplexer using wet or dry transfer methods. A graphene film grown by chemical vapor deposition is transferred and patterned into an array of individual devices, achieving 94% yield. Device performance is evaluated using data fitting methods to obtain electrical transport metrics, showing mobilities comparable to nonmultiplexed devices fabricated on oxide substrates using wet transfer techniques. Separate arrays of indium-arsenide nanowires and micromechanically exfoliated monolayer graphene flakes are transferred using pick-and-place techniques. For the nanowire array mean values for mobility μ<sub>FE</sub> = 880/3180 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup> (lower/upper bound), subthreshold swing 430 mV dec<sup>-1</sup>, and on/off ratio 3.1 decades are extracted, similar to nonmultiplexed devices. In another array, eight mechanically exfoliated graphene flakes are transferred using techniques compatible with fabrication of two-dimensional superlattices, with 75% yield. Our results are a proof-of-concept demonstration of a versatile platform for scalable fabrication and cryogenic characterization of nanomaterial device arrays, which is compatible with a broad range of nanomaterials, transfer techniques, and device integration strategies from the forefront of quantum technology research.</p>

Topics
  • impedance spectroscopy
  • mobility
  • semiconductor
  • two-dimensional
  • chemical vapor deposition
  • Indium