People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Burton, Oliver J.
University of Cambridge
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022The Effects of Surfaces and Surface Passivation on the Electrical Properties of Nanowires and Other Nanostructures
- 2022Defect seeded remote epitaxy of GaAs films on graphene.
- 2020High-Throughput Electrical Characterization of Nanomaterials from Room to Cryogenic Temperatures.
- 2020High-Throughput Electrical Characterization of Nanomaterials from Room to Cryogenic Temperatures.
- 2020Integrated Wafer Scale Growth of Single Crystal Metal Films and High Quality Graphene.
- 2020High-throughput electrical characterization of nanomaterials from room to cryogenic temperaturescitations
- 2020Understanding metal organic chemical vapour deposition of monolayer WS2: the enhancing role of Au substrate for simple organosulfur precursors.
- 2020Integrated wafer scale growth of single crystal metal films and high quality graphenecitations
- 2020Understanding metal organic chemical vapour deposition of monolayer WS<sub>2</sub>: the enhancing role of Au substrate for simple organosulfur precursors.
Places of action
Organizations | Location | People |
---|
article
High-throughput electrical characterization of nanomaterials from room to cryogenic temperatures
Abstract
<p>We present multiplexer methodology and hardware for nanoelectronic device characterization. This high-throughput and scalable approach to testing large arrays of nanodevices operates from room temperature to milli-Kelvin temperatures and is universally compatible with different materials and integration techniques. We demonstrate the applicability of our approach on two archetypal nanomaterials-graphene and semiconductor nanowires-integrated with a GaAs-based multiplexer using wet or dry transfer methods. A graphene film grown by chemical vapor deposition is transferred and patterned into an array of individual devices, achieving 94% yield. Device performance is evaluated using data fitting methods to obtain electrical transport metrics, showing mobilities comparable to nonmultiplexed devices fabricated on oxide substrates using wet transfer techniques. Separate arrays of indium-arsenide nanowires and micromechanically exfoliated monolayer graphene flakes are transferred using pick-and-place techniques. For the nanowire array mean values for mobility μ<sub>FE</sub> = 880/3180 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup> (lower/upper bound), subthreshold swing 430 mV dec<sup>-1</sup>, and on/off ratio 3.1 decades are extracted, similar to nonmultiplexed devices. In another array, eight mechanically exfoliated graphene flakes are transferred using techniques compatible with fabrication of two-dimensional superlattices, with 75% yield. Our results are a proof-of-concept demonstration of a versatile platform for scalable fabrication and cryogenic characterization of nanomaterial device arrays, which is compatible with a broad range of nanomaterials, transfer techniques, and device integration strategies from the forefront of quantum technology research.</p>